Stem Cell   
Bone marrow cell transplantation improves cardiac, autonomic, and functional indexes in acute anterior myocardial infarction patients (Cardiac Study)
Eur J Heart Fail, 2010. 12(2): p. 172-80.
M. F. Piepoli, et al.,
Determinants of functional recovery after myocardial infarction of patients treated with bone marrow-derived stem cells after thrombolytic therapy
Heart, 2010. 96(5): p. 362-7.
J. A. Miettinen, et al.,
Rationale and design of Enhanced Angiogenic Cell Therapy in Acute Myocardial Infarction (ENACT-AMI): the first randomized placebo-controlled trial of enhanced progenitor cell therapy for acute myocardial infarction
Am Heart J, 2010. 159(3): p. 354-60.
M. Taljaard, et al.,
Influence of bone marrow stem cells on left ventricle perfusion and ejection fraction in patients with acute myocardial infarction of anterior wall: randomized clinical trial: Impact of bone marrow stem cell intracoronary infusion on improvement of microcirculation
Eur Heart J, 2009.
S. Grajek, et al.,
Improved regional function after autologous bone marrow-derived stem cell transfer in patients with acute myocardial infarction: a randomized, double-blind strain rate imaging study
Eur Heart J, 2009. 30(6): p. 662-70.
L. Herbots, et al.,
Impact of heterogeneity of human peripheral blood monocyte subsets on myocardial salvage in patients with primary acute myocardial infarction
J Am Coll Cardiol, 2009. 54(2): p. 130-8.
H. Tsujioka, et al.,
Hepatocyte growth factor or vascular endothelial growth factor gene transfer maximizes mesenchymal stem cell-based myocardial salvage after acute myocardial infarction
Circulation, 2009. 120(11 Suppl): p. S247-54.
T. Deuse, et al.,
Effect of intracoronary injection of mononuclear bone marrow stem cells on left ventricular function in patients with acute myocardial infarction
Am J Cardiol, 2009. 104(10): p. 1336-42.
M. Plewka, et al.,
Both cultured and freshly isolated adipose tissue-derived stem cells enhance cardiac function after acute myocardial infarction
Eur Heart J, 2010. 31(4): p. 489-501.
X. Bai, et al.,
Accelerated telomere shortening in leukocyte subpopulations of patients with coronary heart disease: role of cytomegalovirus seropositivity
Circulation, 2009. 120(14): p. 1364-72.
I. Spyridopoulos, et al.,
Intracoronary administration of bone marrow-derived progenitor cells improves left ventricular function in patients at risk for adverse remodeling after acute ST-segment elevation myocardial infarction: results of the Reinfusion of Enriched Progenitor cells And Infarct Remodeling in Acute Myocardial Infarction study (REPAIR-AMI) cardiac magnetic resonance imaging substudy
Am Heart J, 2009. 157(3): p. 541-7.
T. Dill, et al.,
Intracoronary infusion of bone marrow-derived selected CD34+CXCR4+ cells and non-selected mononuclear cells in patients with acute STEMI and reduced left ventricular ejection fraction: results of randomized, multicentre Myocardial Regeneration by Intracoronary Infusion of Selected Population of Stem Cells in Acute Myocardial Infarction (REGENT) Trial
Eur Heart J, 2009. 30(11): p. 1313-21.
M. Tendera, et al.,
Long-term results after intracoronary injection of autologous mononuclear bone marrow cells in acute myocardial infarction: the ASTAMI randomised, controlled study
Heart, 2009. 95(24): p. 1983-9.
J. O. Beitnes, et al.,
Mobilization of bone marrow-derived Oct-4+ SSEA-4+ very small embryonic-like stem cells in patients with acute myocardial infarction
J Am Coll Cardiol, 2009. 53(1): p. 1-9.
W. Wojakowski, et al.,
Percutaneous intramyocardial stem cell injection in patients with acute myocardial infarction: first-in-man study
Heart, 2009. 95(14): p. 1145-52.
K. Krause, et al.,
Peripheral blood stem cell mobilisation by granulocyte-colony stimulating factor in patients with acute and old myocardial infarction for intracoronary cell infusion
Heart, 2009. 95(16): p. 1326-30.
S. A. Chang, et al.,
Priming with angiopoietin-1 augments the vasculogenic potential of the peripheral blood stem cells mobilized with granulocyte colony-stimulating factor through a novel Tie2/Ets-1 pathway
Circulation, 2009. 120(22): p. 2240-50.
M. S. Kim, et al.,
A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction
J Am Coll Cardiol, 2009. 54(24): p. 2277-86.
J. M. Hare, et al.,
Repair of acute myocardial infarction by human stemness factors induced pluripotent stem cells
Circulation, 2009. 120(5): p. 408-16.
T. J. Nelson, et al.,
Sca-1+ stem cell survival and engraftment in the infarcted heart: dual role for preconditioning-induced connexin-43
Circulation, 2009. 119(19): p. 2587-96.
G. Lu, et al.,
Stem cells for myocardial repair with use of a transarterial catheter
Circulation, 2009. 120(11 Suppl): p. S238-46.
X. Wang, et al.,
Survival and cardiac remodeling after myocardial infarction are critically dependent on the host innate immune interleukin-1 receptor-associated kinase-4 signaling: a regulator of bone marrow-derived dendritic cells
Circulation, 2009. 120(14): p. 1401-14.
Y. Maekawa, et al.,
Timing of bone marrow cell delivery has minimal effects on cell viability and cardiac recovery after myocardial infarction
Circ Cardiovasc Imaging, 2010. 3(1): p. 77-85.
R. J. Swijnenburg, et al.,
Transplanted human cord blood-derived unrestricted somatic stem cells improve left-ventricular function and prevent left-ventricular dilation and scar formation after acute myocardial infarction
Heart, 2009. 95(1): p. 27-35.
A. Ghodsizad, et al.,