# Percutaneous Intervention for Carotid Artery Stenosis

# Natural Incidence of CVA In Carotid Stenosis

- Asymptomatic 80% carotid stenosis
  - 6% / year
- Symptomatic carotid stenosis
  - 10% / year
  - 40% / 5 years

# Annual incidence of major stroke according to stenosis severity





### Why should we open?

# Carotid End-Arterectomy vs. Medical Therapy

# NASCET Benefit of CEA by Stenosis Severity



CEA=carotid end arterectomy



### **Carotid End-Arterectomy**

#### 3,061 CEA during a 10-year period

|                    | Stroke | Death | Stroke, MI, Death |
|--------------------|--------|-------|-------------------|
| High Risk Patients | 3.5%   | 4.4%  | 7.4%              |
| Low Risk Patients  | 1.7%   | 0.3%  | 2.9%              |

*Ouriel K, et al. J Vasc Surg 2001;33:728* 





<sup>\*</sup> High risk patients: severe coronary disease, COPD, renal insufficiency

# CEA vs. Medical Rx Symptomatic Patients





### CEA vs. Medical Rx **Asymptomatic Patients**





### Limitations of CEA

- Perioperative stroke for low risk patients : ~6%
- Anatomic considerations
- Cranial nerve palsies: 7~27%
- **Restenosis** : ~15%
- > 50% have severe coronary artery disease

#### Death or Stroke after CEA



Chaturverdi, Neurology 2001 Sep MRC ACST Collaborative group, Lancet 2004



## **Carotid Stenting**

## **Carotid Stenting**

- Reduced complication rates
- Less invasive
- Can reach essentially all blockages
- Very low restenosis rate
- Rapid return to daily life

# High Risk Features of Surgery vs. Stenting for Carotid Stenosis

#### Surgery

- Restenosis
- Prior radiation
- Cranial nerve palsies
- Previous OHS
- High and low lesion
- Contralateral occlusion
- Cardiovacular disease
- Pulmonary disease

- Elderly
- String sign
- Thrombus
- Acute stroke

#### Intervention

- Tortuousity
- Poor access
- Severe calcification
- Previous OHS
- Arch anatomy
- intolerance to antiplatelet

# **Carotid Stenting Current Indications**

- Symptomatic stenosis  $\geq 50\%$  DS
- Asymptomatic stenosis ≥ 70% DS

Consider patients' clinical status, Doppler hemodynamics, and operator's experience ...

# Carotid Stenting Current Contraindications

- Severely tortuous, calcified and atheromatous aortic arch
- Pedunculated thrombus at the lesion site
- Recent stroke ≤ 3 weeks →
   anticoagulants and antiplatelets for 1 month
- Unable to tolerate antiplatelet agents

# Carotid Stenting Without Protection

### **Success & Complications Rates**

| Study         | Setting   | No   | Success<br>Rate | Stroke<br>& TIA* | Death |
|---------------|-----------|------|-----------------|------------------|-------|
| Roubin (1996) | High risk | 146  | 99 %            | 6.2 %            | 0.7 % |
| Shawl (2000)  | High risk | 170  | 99 %            | 2.9 %            | 0 %   |
| Wholey (2000) | Registry  | 5129 | 98.4 %          | 4.2 %            | 0.8 % |
| Roubin (2001) | High risk | 428  | 99 %            | 4.6 %            | 0.2 % |

\* Major stroke < 1%

### **Complications Rates**

#### 4,757 pts, 36 major carotid centers, 1988-1997

| TIAs                 | 2.82 % |
|----------------------|--------|
| Minor Stroke         | 2.72 % |
| Major stroke         | 1.49 % |
| Deaths               | 0.86 % |
| Total stroke & death | 6.29 % |

<sup>\* 6-</sup>mo ISR = 1.99% 12-mo ISR = 3.46%

Wholey MH, et al. CCI 2000;50:160

### **Long-term Outcomes**

#### Enrollment: 1994-99, 528 patients with CAS

- 30-day stroke: 5.8% (major:1%, minor 4.8%)
- 30-day stroke and death: 7.4%
- Most of patients: high risk group
- Fatal and nonfatal stroke between 31days-3yrs: 3.2%
- The 3-year freedom from stroke:  $92\pm1\%$

Most of all strokes occurred in periprocedural period.

Roubin GS et al. Circulation 2001;103:532-537

# Long-term Outcomes Compared to CEA

|                     | CAS   | NASCET     | NASCET     |
|---------------------|-------|------------|------------|
|                     | n=42  | Med, n=331 | CEA, N=328 |
| Any ipsilat stroke  | 9.5%  | 26%        | 9%         |
| Any stroke          | 14.3% | 27.6%      | 12.6%      |
| Any stroke or death | 19%   | 32.3%      | 15.8%      |

Mean follow-up: 1.7 yrs, range (1-62 months)

CAS=carotid artery stenting CEA=carotid endarterectomy

Fox DJ et al. Stroke 2002;33:2877-2880





### Why distal protection?

# Carotid Stenting With Protection

# CAS with Embolic Protection for High Risk Patients

- Randomized Trial
  - SAPPIRE Trial
- Non-randomized Trials
  - ARCHER
  - SHELTER / BEACH
  - MAVERICK
  - CABERNET
  - SECURITY

# Lesions at High Risk of Embolization

- Unstable plaque
  - : break down of fibrous cap
- Soft plaque
- Long stenosis string sign
  - : contain thrombus

### **Embolic Complications in Stenting**

#### Periprocedural

Angiography — Rare

• Access — Rare

Wire Crossing — Rare if coronary wire

• Predilation ——— Rare

• Stent Placement ——— Potential and unpredictable

• Postdilation Potential and unpredictable

Postprocedural ---- Rare

# Methods for Prevention of Distal Embolization

- Use embolic protection device (EPD)
- No pre-dilatation with a peripheral balloon
- No oversizing of balloon
- Never use high pressures
- Never try to dilate the stent to in ulcerated area external to the stent

### Independent Predictors of Embolic Stroke

| 30 days outcome | e <b>S</b>    | P value |
|-----------------|---------------|---------|
| Minor stroke    | Protection(-) | 0.0182  |
|                 | Hypertension  | 0.0216  |
| Major stroke    | Protection(-) | 0.0892  |
|                 | Age>80 yrs    | <0.0001 |
| Fatal stroke    | Protection(-) | 0.0892  |
|                 | Prior TIA     | 0.0320  |
| All stroke      | Protection(-) | 0.0009  |
|                 | Hypertension  | 0.0102  |
|                 | Age>80 yrs    | 0.0081  |
|                 | Prior CEA     | 0.0822  |

AET 2003



### **Embolization during CAS**

|                        | Cerebral Protection |                |  |
|------------------------|---------------------|----------------|--|
|                        | No<br>(n=102)       | Yes<br>(n=142) |  |
| TCD-HITS*              | 100%                | 100%           |  |
| Diffusion weighted-MRI | 29%                 | 7.1%           |  |
| TIA                    | 8%                  | 2.7%           |  |
| Stroke                 | 3%                  | 1.3%           |  |
| TIA + Stroke           | 11%                 | 4%             |  |

<sup>\*</sup>Transcranial doppler-high intensity transient signals Protection devices: Angioguard®, PercuSurge® & EPI

K. Mathias et al, AJNR 2001



### **Ideal Protection System**

- Does not cause harm
  - Complete protection
  - Capture efficiency
- Protection at all time for all particles
- Wide applicability
- User friendly

### **Embolic Protection Devices**

| Distal occlusion   | Theron balloon          |  |  |
|--------------------|-------------------------|--|--|
|                    | PercuSurge Guardwire    |  |  |
|                    | MedNova NeuroShield     |  |  |
|                    | EPI filter              |  |  |
|                    | Angioguard filter       |  |  |
|                    | Medtronic filter        |  |  |
| Filter             | BSC Captura             |  |  |
|                    | Bate's Floating Filter  |  |  |
|                    | Accu-Filter             |  |  |
|                    | E-Trap                  |  |  |
|                    | Microvena Trap          |  |  |
| D                  | Kachel balloon          |  |  |
| Proximal occlusion | ArteriA Parodi Catheter |  |  |

### Strength of Each System

# Occlusion Device

- Mimics standard guidewire more than filters
- Ability to cross lesion
- Particles of all sizes can be blocked (ICA)

# Filter Device

- User-friendly
- Preserves ICA flow

### Weakness of Each System

# Occlusion Device

- Unprotected
  - 1) During passage
  - 2) ECA
  - 3) Incomplete suction
- Does not preserve ICA flow
- Cumbersome procedure (cannot move wire during exchange, several added steps, aspiration)

## Filter Device

- Not same as standard guidewire
- Larger profile, less flexible
- Occasional need to predilate (recross PTA site)
- Unprotected
  - 1) during passage
  - 2) small particles
  - 3) flow around filter
  - 4) during filter retrieval
- May thrombose

# Different Protection Devices Advantages and Disadvantages

|                  | Easy<br>to<br>use | Emboli<br>during<br>lesion<br>crossing | Flow<br>decrease | ICA<br>protect | Angio<br>during<br>protection | Emboli<br>through<br>ECA | Spasm/<br>damage<br>to ICA | Tolerance |
|------------------|-------------------|----------------------------------------|------------------|----------------|-------------------------------|--------------------------|----------------------------|-----------|
| Filters          | +++               | +                                      | +                | +              | +++                           |                          | +++                        | +++       |
| Occlusion        | ++                | +                                      | ++               | ++             |                               | +++                      | +++                        | +         |
| Flow<br>reversal | +                 |                                        | +++              | +++            | +++                           |                          |                            | +         |

#### **Embolic Protection Devices**





# Benefit of Distal Protection Periprocedural Outcomes



# **Benefit of Distal Protection Periprocedural Outcomes**

All cause death, major & minor stroke





# **Benefit of Distal Protection 30-Day Outcomes**



Stroke 2003;34:813-819



### **Embolic Protection Device Distal Occlusion**



#### **Distal Occlusion Device**

PercuSurge GuardWire™



Al-Mubarak et al, Circulation, 2001





#### **Distal Occlusion Device**

**PercuSurge GuardWire™** 

**30-Day Event** 

246 patients with 272 lesions



J Interven Cardiol 2004;61:233-43



#### **Distal Occlusion Device**

#### **PercuSurge GuardWire™**

| Number                                         | 179       |
|------------------------------------------------|-----------|
| Technical success                              | 99.3 %    |
| Overall mean balloon time (sec)                | 410 ± 220 |
| 30-day stroke rate                             | 6 (2.3 %) |
| Minor stroke (TIA, retinal embolism)           | 4 (1.5%)  |
| Major stroke                                   | 1 (0.4%)  |
| Death (cardiac)                                | 1 (0.4%)  |
| 36-month event (stroke & death )-free survival | 97%       |
| Death (AMI, stroke, cancer)                    | 4 (1.5%)  |

Catheter Cardiovasc interv 2004;61:293-305



#### Embolic Protection Devices Filter



**Guidant - ACCUNET** 

**BSC** - FilterWire

**ABBOTT - Emboshield** 

**Cordis - Angioguard** 

EV3 - Spider

#### **Features of Filter**

- Delivery profile
- Steerability
- Vessel wall apposition
- Pore size
- Capture efficiency
- Ease of retrieval
- Clinical event rates

#### **Wall Apposition in Curves**



# Accunet Filter ARCHeR Trial 30-Day Event



Illig KA et al. J Vasc Surg. 2003;37:575-81.





# Mednova Filter SECURITY Trial 30-Day Event





# Filter Wire BEACH Trial 30-Day Event



White CJ et al. Catheter Cardiovasc Interv. 2006;67:503-12.





### 30 Day Stroke/Death/MI in High Risk Registry 2002-2004





### Practical Use of Distal Protection CAPTURE 2500 Registry

- Stent; RX ACCULINK
- Protection device; RX ACCUNET<sup>™</sup> filter system
- N=2,500 at 137 hospitals
   (less than maximal 40 patients per a hospital)
- More than 1/3 patients were enrolled at hospitals with a high level of experience.
- 1° Endpoint; composite of 1-month death / MI / stroke

### Practical Use of Distal Protection CAPTURE 2500 Registry vs ARCHeR Trial

Primary Events < 30 days

| Event                  | CAPTURE (N=2,500) | ARCHeR (N=581) | DIFFERENCE<br>95% CI   |
|------------------------|-------------------|----------------|------------------------|
| Death, Stroke, MI*     | 5.7%              | 8.3%           | -2.54% [-4.96, -0.13]  |
| Death                  | 1.6%              | 2.1%           | -0.47% [-1.72, 0.79]   |
| Stroke-related death   | 0.8%              | 0.5%           | 0.24% [-0.43, 0.92]    |
| All stroke             | 4.2%              | 5.5%           | -1.27% [-3.28, 0.75]   |
| Major stroke           | 1.7%              | 1.5%           | 0.13% [-0.99, 1.25]    |
| Minor stroke           | 2.6%              | 4.0%           | -1.32% [-3.02, 0.39]   |
| MI*                    | 0.9%              | 2.4%           | -1.49% [ -2.79, -0.19] |
| All stroke and death   | 5.1%              | 6.9%           | -1.80% [-4.04, -0.43]  |
| Major stroke and death | 2.5%              | 2.9%           | -0.41% [-1.91, 1.10]   |

<sup>\*</sup> P<0.05



### Practical Use of Distal Protection CAPTURE 2500 Registry vs ARCHeR Trial

Asymptomatic Patient Events < 30 days

| Event                  | CAPTURE (N=2,267) | ARCHeR<br>(N=443) | DIFFERENCE<br>95% CI   |
|------------------------|-------------------|-------------------|------------------------|
| Death, Stroke, MI*     | 4.9%              | 6.8%              | -1.92% [-4.42, -0.58]  |
| Death                  | 1.3%              | 2.0%              | -0.71% [-2.10, 0.69]   |
| Stroke-related death   | 0.5%              | 0.2%              | 0.26% [-0.27, 0.79]    |
| All stroke             | 3.5%              | 3.8%              | -0.31% [-2.25, 1.63]   |
| Major stroke           | 1.3%              | 0.7%              | 0.65% [-0.25, 1.54]    |
| Minor stroke           | 2.2%              | 3.2%              | -0.91% [-2.65, 0.83]   |
| MI*                    | 0.7%              | 2.5%              | -1.73% [ -3.23, -0.24] |
| All stroke and death   | 4.4%              | 5.4%              | -1.05% [-3.32, 1.22]   |
| Major stroke and death | 2.2%              | 2.3%              | -0.41% [-1.60, 1.41]   |

\* P<0.05



### Practical Use of Distal Protection CAPTURE 2500 Registry vs ARCHeR Trial

Symptomatic Patient Events < 30 days

| Event                  | CAPTURE (N=233) | ARCHeR (N=138) | DIFFERENCE<br>95% CI |
|------------------------|-----------------|----------------|----------------------|
| Death, Stroke, MI*     | 14.2%           | 13.0%          | -1.12% [-6.06, 8.30] |
| Death                  | 4.3%            | 2.2%           | 2.12% [-1.44, 5.68]  |
| Stroke-related death   | 3.4%            | 1.4%           | 1.98% [-1.09, 5.06]  |
| All stroke             | 11.2%           | 10.9%          | 0.29% [-6.29, 6.87]  |
| Major stroke           | 5.2%            | 4.3%           | 0.80% [-3.63, 5.23]  |
| Minor stroke           | 6.4%            | 6.5%           | -0.08% [-5.27, 5.10] |
| MI                     | 2.6%            | 2.2%           | 0.40% [ -2.77, 3.57] |
| All stroke and death   | 12.0%           | 11.6%          | 0.42% [-6.36, 7.20]  |
| Major stroke and death | 6.0%            | 5.1%           | 0.94% [-3.83, 5.70]  |

\* P<0.05





#### **Practical Use of Distal Protection CAPTURE 2500 Registry**

Events < 30 days by Physician Experience

| CAPTURE (N=2,500)      | High<br>(N=226) | Medium<br>(N=1770) | Low<br>(N=504) |
|------------------------|-----------------|--------------------|----------------|
| Death, Stroke, MI      | 6.2%            | 5.8%               | 5.4%           |
| Death                  | 0.0%            | 1.7%               | 2.0%           |
| All stroke             | 5.8%            | 4.2%               | 3.8%           |
| Major stroke           | 1.3%            | 1.8%               | 1.6%           |
| Minor stroke           | 4.4%            | 2.5%               | 2.2%           |
| MI                     | 0.4%            | 0.9%               | 1.2%           |
| All stroke and death   | 5.8%            | 5.1%               | 4.6%           |
| Major stroke and death | 1.3%            | 2.7%               | 2.4%           |

\* P<0.05

### Practical Use of Distal Protection CAPTURE 2500 Registry: Conclusions

- Community based carotid stenting provides excellent results.
- Rollout of therapy to physicians with varying levels of experience achieved excellent results comparable to ARCHeR.
- Stroke/death rate (3.6%) for asymptomatic patients <80 years approaches ACAS/ACST outcomes in high risk patients.

# Carotid Endarterectomy vs. Carotid Stenting

#### **CAVATAS**

#### **CEA vs. Angioplasty without protection** in Low and High Surgical Risk group

|                                 | Angioplasty | CEA              |
|---------------------------------|-------------|------------------|
|                                 | N=251       | N=253            |
| 30-day death & stroke           | 6.4%        | 5.9 %            |
| Cranial neuropathy              | 0 %         | 8.7 %            |
| 1-year restenosis (>70% DS)*    | 14 %        | 4 %              |
| 3-year death or diabling stroke | 14.3 %      | 14.2 %           |
| * Stenting = only in 26%        | Lana        | ot 2001:357:1720 |



#### CEA vs. CAS without protection

### Prospective Randomized Trial in Low and High Surgical Risk group

|                                | CAS  | CEA      |
|--------------------------------|------|----------|
|                                | N=53 | N=51     |
| Death/cerebral ischemia, n     |      |          |
| Death                          | 0    | 1        |
| Stroke                         | 0    | 0        |
| TIA                            | 1    | $0 \\ 0$ |
| Other, n                       | 1    | U        |
| Arterial thrombosis/amputation | 1    | 0        |
| Hematoma                       | 3    | 1        |
| Cranial/cervical n injury      | 0    | 0        |
| Bradycardia                    | 7    | 7        |
| Hypotension                    | 12   | 3        |

Brooks et al. J Am Coll Cardiol 2001;38:1589-95



**SAPPHIRE** 

#### **CES vs. CAS with Filter**

From August 2000 to July 2002

Carotid a stenosis with high risk (n=334)

**Randomization (1:1)** 

Carotid stenting with filter device (n=167)

Carotid endarterectomy (n=167)

Primary endpint: composite of death, stroke, or MI within 30 days or death or ipsilateral stroke btw 31days and 1 year

#### **30-Day Outcomes**

#### Death /MI /Stroke

#### **Cranial nerve palsy**







#### 1-Year Clinical Outcomes





#### **SAPPHIRE**

#### **CEA vs. CAS with Filter**

#### 1-Year TLR



#### Conclusion

• Among patients with severe carotidartery stenosis and coexisting conditions, CAS with the use of an emboli-protection device is not inferior to CEA.

#### CEA vs. CAS

#### 30 days outcomes from 5 RCT (n=1269)

(CAVATAS, Kentucky A&B, Leicester, WALL STENT, SAPPHIRE)

#### Death / any stroke



#### Death / disabling stroke



Coward LJ, et al. Stroke 2005;36:905-911



#### CEA vs. CAS

#### Outcomes from 5 RCT (n=1269)

(CAVATAS, Kentucky A&B, Leicester, WALL STENT, SAPPHIRE)

#### Death /any stroke at 1 year

#### 

#### Cranial nerve palsy



Coward LJ, et al. Stroke 2005;36:905-911



Case-control study

#### CES vs. CAS with Filter

From 2001 to 2004

Carotid a stenosis (n=602)

Concurrent-risk matched group

Carotid stenting with filter device (n=301)

Carotid endarterectomy (n=301)

Perioperative and midterm results of CAS vs. CEA





#### **30-Day Outcomes**

50% of CAS disabling strokes occurred during cannulation of epiaortic vessel

#### Death / disabling stroke



#### TIA





#### **30-Day Outcomes**

A decreasing trend in 30-day stroke with expertise





#### Any stroke Last 201 pts/arm





#### **36-Month Restenosis**





#### **Independent Risk Factors**

| Predictors | Disabling stroke/death      | Any stroke                   |
|------------|-----------------------------|------------------------------|
| CAS        | HR 3.6 [0.93-13.9], p=0.06  | HR 3.9 [1.6-9.4], p=0.002    |
| Urgency    | HR 8.9 [1.71-46.4], P=0.009 | HR 4.6 [1.2-18.6], P=0.03    |
| Diabetes   |                             | HR 2.2 [1.01, 4.83], P=0.045 |
| Age        |                             | HR 1.06 [1.01, 1.1], P=0.02  |



### Crotid Stenting vs. CEA before Open Heart Surgery

for Combined Severe Carotid and Coronary Stenosis

| 30-Day Event           | CS + OHS<br>N=56 | CEA + OHS<br>N=112 | P    |
|------------------------|------------------|--------------------|------|
| MI                     | 2 (3.3%)         | 14 (12.6%)         | 0.06 |
| Stroke                 | 1 (1.8%)         | 10 (9.0%)          | 0.08 |
| Death                  | 3 (5.4%)         | 8 (7.2%)           | 0.65 |
| Death/MI,<br>or stroke | 6 (10.7%)        | 24 (21.6%)         | 0.08 |

<sup>\*</sup> CEA+OHS group had higher baseline risk profile

Am J Cardiol 2005;96:519-523





### **Carotid Stenting**

- Although there is insufficient evidence to support CS, CS may be a more preferred therapy to CEA with appropriate learning curve and the use of the protection device
- Technical progress, advance in technical expertise and patients selection are important to reduce the risk of CS
- CS may be extended to all patients subsets, such as symptomatic, asymptomatic, high risk, and low risk subgroups.