Alcohol Septal Ablation for Hypertrophic Obstructive Cardiomyopathy

Alcohol Septal Ablation (ASA)

Nonsurgical technique for septal myocardial reduction

- Dramatic hemodynamic improvement
- Technically easy to interventional cardiologists

ASA therapy has been increasingly used for patients with HOCM unresponsive to medical treatment (until now, ~3,500 cases worldwide).

Limitations of AST

Potential serious complications:
a large infarct
complete AV block
ventricular tachyarrhythmia

• Hemodynamic recurrence

Hemodynamic Recurrence

Purpose

- To investigate the incidence and determinants of hemodynamic recurrence after successful ASA therapy
- To investigate the impact of ethanol dose on hemodynamic recurrence and clinical outcomes

Indications

• Symptomatic patients (≥NYHA FC II) with HOCM unresponsive to medical therapy

- Significant LVOT obstruction: resting > 30mmHg or provocable > 50mmHg
- Basal septal thickness > 15mm

Study Patients

Between December 1996 & March 2004, 37 patients (20 females, 17 males) with symptomatic HOCM

Procedure of ASA

Target Artery

Balloon

No Reflow

Absolute alcohol (usually 2-3ml) was slowly injected through the lumen of the inflated balloon into the septal artery & left for 5 minutes before the balloon is deflated.

Myocardial Contrast Echocardiography (MCE)

MCE was used to select the target artery, which supply the septal myocardium to be ablated.

CVRF CardioVascular Research Foundation

Pressure Recording

Before Ablation

After Ablation

Post-ablation Management

- Patients were observed in the intensive care unit for 1-3 days.
- ECG and cardiac enzymes were carefully monitored.
- Discharge : usually 7 days after the ASA

Procedure Summary

• Target artery:

1st septal branch; 31 (80%)
2nd septal branch; 6 (15%)
>1 septal branches; 3 (8%)
Alcohol amount: 3.7 ± 2.1ml (1~10)
Use of MCE: last 16 cases (43%)

Follow Up

Clinical follow-up every 3 months

 Echocardiographic follow-up before discharge, 3-6 months and 1 year after the procedure, and thereafter when clinically indicated

Therapeutic Effects

 Procedural success (relief of symptoms and reduction of LVOT pressure gradient >50% of baseline at Cath. Lab): 35 patients of 37 patients who received AST (95%)

 Symptomatic improvements(NYHA FC≥ grade 1): 31 patients of 35 patients with procedural success (88%)

Echocardiographic Data

	Baseline	Imme. post- procedure	3 months after procedure	1 year after procedure
LVESD (mm)	23.3 ± 5.6	23.4 ± 4.7	25.9 ± 5.3*	$26.5 \pm 5.6^{*}$
LVEDD (mm)	41.7 ± 7.5	41.9 ± 6.4	$45.1 \pm 6.8^*$	$45.3 \pm 6.5^{*}$
IVS (mm)	22.0 ± 5.0	21.7 ± 4.8	$18.6 \pm 4.4*$	$18.4 \pm 4.9^{*}$
LVPW (mm)	12.7 ± 2.3	12.4 ± 1.9	11.9 ± 2.5	11.9 ± 2.4
LA (mm)	47.0 ± 7.4	44.9 ± 6.1	46.6 ± 8.2	47.2 ± 7.5
LVOT PG (mmHg)	88.1 ± 45.8	55.3± 40.9*	42.1 ± 49.0*	$48.2 \pm 40.3*$

*p<0.05

Evolution of LVOT PG Doppler echocardiogram

CVRF CardioVascular Research Foundation

Hemodynamic Recurrence

9 9 Number of patients 3 2 In hospital 6 M 1 year

Definition:

defined as re-elevation of LVOT pressure gradient ≥50% of baseline after successful procedure

Of 35 patients with successful procedure, 14 patients (40%) had recurrence of LVOT obstruction.

Determinants of Hemodynamic Recurrence

	Recurrence	No Recurrence	p-Value
	(n=14)	(n=21)	
F/U duration (month)	56.5±30.3	62.5±30.2	NS
Age (year)	52.8±11.2	46.6±9.1	NS
NYHA Class, initial	2.6 ± 0.8	2.1±0.9	NS
NYHA Class, F/U	1.2 ± 0.6	0.7±0.8	NS
MCE, n(%)	8(57.1%)	7(33.3%)	NS

Determinants of Hemodynamic Recurrence

	Recurrence	No Recurrence	p-Value
	(n=14)	(n=21)	
Alcohol (ml)	3.1±2.0	4.2 ± 2.2	NS
Peak CK (U/L)	949±429	2125 ± 1510	<0.05
IVS (mm)	18.9±4.2	23.0±6.8	<0.05
Resting LVOT	79.9±32.0	49.6±32.1	<0.05
PG (mmHg)			

Recurrence of LVOT Obstruction

Independent determinant of hemodynamic Recurrence of LVOT

obstruction :

Lower CK level (<1,100 U/L) (OR 27.7, p<0.05, 95%CI 1.9-

403.

Recurrence of LVOT Obstruction

CVRF CardioVascular Research Foundation

Recurrence of LVOT Obstruction

Early Complications

• Death due to intractable VT: 1 (3%)

- LAD infarct: 2 (5%)
- CAVB: permanent 5 (14%), transient 18 (49%)

Predictors of Major Complications

Major complications

(cardiac death, LAD infarction,CAVB): - peak CK level > 2,000 U/L (50.0% vs. 22.2%, p<0.05) - amount of alcohol≥4ml (70.0% vs. 25.9%, p<0.05)

Amount of alcohol injection≥4ml was an independent determinant of major complications. (OR 15.33, 95% CI : 1.53-163.55, p<0.05)

Long-term Follow up

- Follow up duration : 20.6 ± 8.9 months
- All cause death : 5 patients
 - Cardiac death 3 patients
 - (peri-procedural death : 1 patients)
 - Non cardiac death 2 patients
- Symptomatic improvement : 26/37 patients (70%)
- Symptomatic ventricular tachycardia : 0 patients
- Myocardial infarction : 3 patients

Survival Curve

Follow Up Duration (Months)

Conclusions

- AST is a promising nonsurgical technique for septal myocardial reduction in HOCM.
- Major complications was related to a large amount of alcohol injection (>4 ml), and hemodynamic recurrence was related to insufficient infarction.
- Taken together, target artery and ethanol dose (2-3ml) should be carefully selected to get the therapeutic benefits without major complications.

Hypertrophic Obstructive Cardiomyopathy

 Left ventricular(LV) outflow obstruction is an important determinant of symptoms

 Therapies that reduce the LV outflow pressure gradient may improve LV filling pressure and symptoms

Effect of LVOT on Clinical Outcome in HCMP

Summit TC Jeffie Dogifiq 8297.

Indication for ASA

Medically refractory symptoms

 LV outflow pressure gradient: basal condition > 30 mmHg provocative maneuver > 50 mmHg

Myocardial Contrast Echocardiography

Myocardial Contrast Echocardiography

Mean NYHA & CCS Class before and after Alcohol Septal Ablation

CVRF CardioVascular Research Foundation

Mean LVOT PG before and after ASA

Optimal Ethanol Amount

CVRF CardioVascular Research Foundation

Alcohol Septal Ablation vs Surgical Septal Myectomy

ASA selectively produces transmural infarction of the basal mid-septum and adjacent right bundle tissue, whereas surgical myectomy affects the endocardial portion of the basal anterior septum and adjacent left bundle tissue.

Summit TCT Asia Pacific 2007

JACC2004:44:2329

Comparison of Surgical Myectomy vs ASA With Cardiac MRI in Patients with HOCM

Septal myectomy provides consistent resection of the obstructing portion of the anterior basal septum, whereas the effect of ethanol septal ablation is more variable (more inferior location in basal & mid-ventricular septum; proximal basal septum spared in 25%).

Complications (Systematic Review)

	Ν	Mean±SEM	Range
In-hospital mortality (%)	2,959	1.5±0.03	0.0-5.0
Late mortality (%)	2,840	0.5±0.03	0.0-9.3
Complete AV block (%)	1,869	10.5±0.2	0.0-40.0
Ventricular fibrillation (%)	464	2.2±0.1	0.0-4.0
Persistence of symptoms (%)	724	10.8±0.2	5.0-25.0

J Interv Cardiol 2006;19:319–327

Need For Rigorous Studies

- Potential complications: complete AV block, ventricular arrhythmia
- At present, long-term follow-up is lacking.
- Without a randomized study, it is difficult to assign efficacy differences between the ASA and surgical myectomy.

Summary

- ASA is a promising nonsurgical technique for septal myocardial reduction in HOCM
- A randomized trial comparing myectomy with ASA may be needed to assess the effectiveness of these therapies.