Carotid Artery Stenting Current status and perspective

Natural Incidence of CVA In Carotid Stenosis

Asymptomatic 80% carotid stenosis

1.9%/ year (ESCT registry)
12% / 5 year (ACAS, ACST)

Symptomatic 50% carotid stenosis

10% / year
40% / 5 years

Carotid Artery stenosis

Current guidelines

ANGIOPLASTY SUMMIT

ANGIOPLASTY SUMMIT

Indications for carotid artery revascularization

Indication level	Symptomatic stenosis	Asymptomatic stenosis
Proven	 70-99% stenosis Periprocedural complication risk <6% 	 > 60% stenosis Periprocedural complication risk <3% Life expectancy > 5yrs
Acceptable	 50-69% stenosis Periprocedural complication risk <6% 	 > 60% stenosis Periprocedural complication risk <3% Planned CABG
Unacceptable	 <29% stenosis, or Periprocedural complication risk > 6% 	 < 60% stenosis or Periprocedural complication risk >3% No indication for CABG
		Circulation 2006:113:2021-2030

Carotid Stenting:

 NASCET-2 trial (2.226 pts, 50-69% stenosis) showed that a modest benefit in favor of surgery
 Current guideline of carotid revascularization
 Symptomatic stenosis ≥ 70%
 Asymptomatic stenosis ≥ 80%

• ESCT group (2,295 pts) showed that different stroke risk of asymptomatic stenosis; < 2% of <80% stenosis, 9.8% of 80-89% stenosis, 14.4% of 90-99% at 3 years.

Carotid Stenting:

 Currently, the only use of carotid stenting that has been approved by FDA is in <u>symptomatic patients with</u> <u>stenosis of the internal carotid artery exceeding 70%</u> who are at <u>high risk for complications after surgery</u>.

• The limited FDA approval of stenting is largely based on the results of SAPPHIRE trial, involving patients who had <u>symptomatic stenosis of the internal carotid</u> <u>artery exceeding 50% or asymptomatic stenosis</u> <u>exceeding 80%</u> and who were at <u>high surgical risk</u> mainly owing to severe coronary artery disease.

Current Goal of Carotid stenting based on NASCET¹, ECST², ACAS³, ACST⁴

Morbidity and mortality after carotid intervention should be...

Symptomatic < $6\%^{1,2}$ Asymptomatic < $3\%^{3,4}$

Carotid Artery stenosis

High risk group for surgery High risk group for stenting

High Risk Features of Surgery vs. Stenting for Carotid Stenosis

Intervention Surgery Tortuousity Restenosis Prior radiation Poor access Elderly • Cranial nerve palsies Severe calcification String sign Previous OHS Previous OHS • Thrombus • High and low lesion Arch anatomy Contralateral occlusion Acute stroke intolerance to antiplatelet • Cardiovacular disease Pulmonary disease

Who is High Risk Patient? Clinical Criteria

- Age greater than 80
- Unstable angina CCS III-IV
- EF< 30%
- MI within past 6 wks
- Severe COPD (FEV1 < 30% predicted)
- Renarrowing after prior CEA (80% Asx; 50% Sx)
- Total occlusion of the contralateral ICA
- Two or more proximal or major coronary arteries with >70% stenosis

Who is High Risk Patient? Anatomical Criteria

- Previous radiation treatment to neck
- Previous radical neck surgery
- Inability to extend neck
- Patient has a tracheostomy or tracheal stoma
- Laryngeal nerve palsy
- Lesion with difficult access

Carotid End-Arterectomy

3,061 CEA during a 10-year period

	Stroke	Death	Stroke, MI, Death
High Risk Patients	3.5%	4.4%	7.4%
Low Risk Patients	1.7%	0.3%	2.9%

* High risk patients: severe coronary disease, COPD, renal insufficiency

Ouriel K, et al. J Vasc Surg 2001;33:728

Features a/w increased procedural risks after carotid stenting

	Risk factors	Features
Clinical	Advanced age	Age ≥ 80 yrs
	Decreased cerebral reserve	-Dementia -Prior (remote) stroke -Multiple lacunar infarcts -Intracranial microangiopathy
Angiographic	Excessive tortuosity	$\geq 2.90^{\circ}$ bends within 5 cm of the lesion
	Heavy calcification	 -Concentric circumferential calcification -Width ≥ 3mm

Circulation 2006;113:2021-2030

CVRF CardioVascular Research Foundation

Carotid Artery Stenting Current status

Embolic protection device (EPD) ??

Why Embolic Protection?

Why Embolic Protection?

Distal Occlusion Device PercuSurge GuardWire™

Al-Mubarak et al, Circulation, 2001

Embolic Protection Device Distal Occlusion

CVRF CardioVascular Research Foundation

Embolic Protection Devices (EPD) Filter

Guidant - ACCUNET

BSC - FilterWire

ABBOTT - Emboshield

Cordis - Angioguard

EV3 - Spider

Benefit of Distal Protection Periprocedural Outcomes

CVRF CardioVascular Research Foundation

Benefit of Distal Protection Periprocedural Outcomes

All cause death, major & minor stroke

CVRF CardioVascular Research Foundation

Benefit of Distal Protection 30-Day Outcomes

CVRF CardioVascular Research Foundation

Carotid Artery Stenting Current status

Embolic protection device (EPD) is mandatory in CAS

Unended fight

Carotid Endarterectomy

VS.

Carotid Stenting

Carotid Stent Trial Data

Pre-EPD

- Normal risk/randomized
 - WallStent trial-1999 (223)

Post-EPD

- Normal risk/symptomatic and asymptomatic/randomized
 - CREST, ACT 1
- Normal risk/symptomatic/randomized
 - EVA-3S, SPACE, CAVATAS 2
- Normal risk/non-randomized
 - CARESS-2003 (143)
- High risk/randomized
 - SAPPHIRE-2002 (334)
- High risk/registry
 - SAPPHIRE-2002 (406)
 - ARCHeR-2003 (581)
 - SECuRITY-2003 (305)
 - BEACH-2004 (408)
 - CABERNET-2004 (454)
 - CREATE -2005 (413)

US Carotid Stent Trials: pre-EPD

Schneider Carotid Wallstent trial

- First randomized trial to compare stent (non-dedicated, tracheobronchial, no embolic protection) with CEA in ~200 patients
- A "normal risk" trial in symptomatic patients
- Stopped early as DSMB determined continued enrollment would not meet pre-specified endpoints

Wallstent Trial Results (1997-1999)

Event (1 year)	Stent (N=108)	Surgery (N=115)	Difference	Р
Study-related death Or ipsilateral stroke	12% (12/98)	4% (4/91)	7.8%	0.067
Study-related death	6% (6/98)	2% (2/91)	3.9%	0.28
Ipsilateral stroke	7% (6/92)	3% (3/90)	3.2%	0.49
Major	2% (2/92)	1% (1/89)	1.1%	1.00
Minor	2% (2/92)	0% (0/89)	2.2%	0.49
Undetermined	2% (2/92)	2% (2/90)	-0.0%	1.00

Schneider Carotid Wallstent Trial: Analysis

- No Phase I trial preceded this randomized effort
- Trial design flawed:
 - Power
 - Endpoints
- <u>Operator training requirements were inadequate</u>
- Non-dedicated equipment without embolic protection
- No PI or Executive Committee
 - As a result, after Schneider acquisition by BSC, continuity of trial conduct was disrupted
- Evolving technique and equipment represented a suboptimal environment for a randomized trial

Symptomatic <u>high surgical</u> & Asymptomatic <u>high surgical</u>

CAVATAS CEA vs. <u>Angioplasty without protection</u> in Low and High Surgical Risk group			
	Angioplast	y CEA	
	N=251	N=253	
30-day death & stroke	6.4%	5.9 %	
Cranial neuropathy	0 %	8.7 %	
1-year restenosis (>70% DS)*	* 14 %	4 %	
3-year death or disabling stro	oke 14.3 %	14.2 %	
* Stenting = only in 26%		Lancet 2001;357:1729-37	
CardioVascular Research Foundation	5	immit TCT Asia Pacific 2007	

Yadav JS, et al. NEJM 2004;351:1493

CEA vs. CAS with Filter **30-Day Outcomes**

Death /MI /Stroke

Cranial nerve palsy

SAPPHIRE

CEA vs. CAS with Filter **30-Day Outcomes**

Summit TCT Asia Pacific 2007

SAPPHIRE

CEA vs. CAS with Filter SAPPHIRE **1-Year Clinical Outcomes**

CEA vs. CAS with Filter SAPPHIRE

Primary endpoint: composite of death, stroke, or MI within 30 days or death or ipsilateral stroke between 31 days and 1 year

Symptomatic patients

Summit TCT Asia Pacific 2007

Asymptomatic patients

CEA vs. CAS with Filter 1-Year TLR

CVRF CardioVascular Research Foundation

Summit TCT Asia Pacific 2007

SAPPHIRE

Conclusion

 Among patients with severe carotid-artery stenosis and coexisting conditions, CAS with the use of an emboli-protection device is not inferior to CEA.

Yadav JS, et al. NEJM 2004;351:1493

CEA vs. CAS with or without EPD Outcomes from 5 RCT (n=1269) (CAVATAS, Kentucky A&B, Leicester, WALL STENT, SAPPHIRE)

ARCHeR

CEA vs. CAS with Accunet 30-Day and 1-year Outcomes

Gray WA, et al. J Vasc Surg 2006;44:258-69

CEA vs. CAS with Filter **30-Day Outcomes** 50% of CAS disabling strokes occurred during

cannulation of epiaortic vessel

Death / disabling stroke

Cao P, et al. Stroke 2006;37:1221-1226

TIA

CEA vs. CAS with Filter Case-control study 30-Day Outcomes

A decreasing trend in 30-day stroke with expertise

CEA vs. CAS with Filter Case-control study 36-Month restenosis

CEA vs. CAS with Filter Case-control study Independent risk factors

Predictors	Disabling stroke/death	Any stroke		
CAS	HR 3.6 [0.93-13.9], p=0.06	HR 3.9 [1.6-9.4], p=0.002		
Urgency	HR 8.9 [1.71-46.4], P=0.009	HR 4.6 [1.2-18.6], P=0.03		
Diabetes		HR 2.2 [1.01, 4.83], P=0.045		
Age		HR 1.06 [1.01, 1.1], P=0.02		

Cao P, et al. Stroke 2006;37:1221-1226

AMC Experience

AMC

Carotid Stenting in AMC

- From 04/2001' to 04/2007'
- 103 consecutive patients (staged bilateral procedure in 5 patients)
- 108 lesions : bilateral stenting in 5 patients
- IO3 severe (≥70%) ICA stenosis
- 4 moderate (50-70%) ICA stenosis

Baseline Characteristics

Variables	N=103	
Age, years	66.2±7.3	
Sex, men	86 (79.6%)	
Diabetes	53 (49.1%)	
Hypertension	77 (71.3%)	
Dyslipidemia	32 (29.6%)	
History of Smoking	65 (60.2%)	
History of IHD	87 (80.6%)	
Stable angina	31 (28.7%)	
Unstable angina	48 (44.4%)	
Recent or acute MI	2 (1.9%)	
Old MI	9 (8.3%)	
Congestive heart failure	15 (13.9%)	
Peripheral artery disease	8 (7.4%)	
Renal insufficiency	12 (11.2%)	
Chronic renal failure	10 (9.3%)	
End stage renal failure	2 (1.9%)	
Chronic obstructive pulmonary disease	2 (1.9%)	

Summit TCT Asia Pacific 2007

AMC

Neurologic Status / Underlying AMC Coronary & Carotid Disease

Variables	N=103		
Prior history of CVA (>6months)	27/103 (26%)		
History of TIA	6		
History of stroke	21		
Symptomatic (<6months)	34/103 (33%)		
Amaurosis fugax	3		
TIA	11		
Minor stroke	1		
Major stroke	19		
Bilateral carotid stenosis (≥50%)	34/103 (33%)		
Target lesion			
Rt. ICA	59		
Lt. ICA	47		
Both ICA	5 (4.9%)		
Severe CAD requiring revascularization	83/103 (81%)		

30-day outcomes Death/MI/Stroke

Summit TCT Asia Pacific 2007

AMC

AMC Long-term outcomes **Death/Stroke** Follow-up duration : mean 14.5 ± 13.7 months

CVRF CardioVascular Research Foundation

30-Day Outcomes

Summit TCT Asia Pacific 2007

AMC

30-Day Outcomes

Summit TCT Asia Pacific 2007

AMC

30 Day Stroke/Death/MI in high risk Registry

Symptomatic normal risk & Asymptomatic normal risk

CEA vs. CAS with GuardWire CaRESS 30-Day and 1-year Outcomes

Death / stroke at 30 days

Death / stroke at 1 year

J Vasc Surg 2005;42:213-9

Primary end point: incidence of <u>any stroke or death</u> within 30 days after treatment

NEJM 2006;355:1660-71

EVA-35 Major eligibility Criteria

Inclusion criteria

- Age ≥ 18 yrs
- Hemispheric or retinal transient ischemic attack or nondisabling stroke (or retinal infarct) within 120 days before enrollment
- Stenosis ≥ 60%
 in symptomatic carotid artery

Exclusion criteria

- Modified Rankin $S \ge 3$
- Severe tandem lesion
- Previous Hx. (CEA,CAS)
- Uncontrolled HT or DM
- Unstable angina
- Contra-Ix. of heparin, clopidogrel
- Hx. of bleeding disorder
- Life expectancy < 2yr

6 Months Events

NEJM 2006;355:1660-71

Conclusion

In patients with symptomatic carotid stenosis of 60% or more, the rates of death and stroke at 1 and 6 months were lower with endarterectomy than with stenting

NEJM 2006;355:1660-71

Limitation

- Early in the EVA-3S trial, protection from embolism was not used among patients who underwent stenting, and the incidence of stroke was 25% (5 of 20).
 - -Protection device was used in 91.9% of carotid stenting arm.
- Learning curve for carotid stenting; Involved center had a variable degree of experience in CAS.

-Five different stents, seven different protection devices, and experience with two procedures was required for any new device used.

NEJM 2006;355:1660-71

Limitation

- Although the angiographic appearance of the lesion was not an eligibility criterion, plaque morphology (length, degree of ulceration, and presence or absence of thrombus) could be related to complication rates for stenting.
- 42 and 36 patients who underwent stenting in the EVA-3S trial received only single (unspecified) antiplatelet therapy before and after the procedure, respectively.

NEJM 2006;355:1660-71

SPACE 30 days results from SPACE trial in symptomatic patients Randomized non-inferiority trial

Lancet 2006;368;1239-47

Primary endpoint

<u>Ipsilateral stroke</u> (ischemic stroke or intracerebral bleeding or both , with symptoms lasting more than 24 hr) or <u>death of any cause</u> between randomization and <u>30 days</u> after Treatment.

Null hypothesis

The difference between the events rates in CAS and CEA group was 2.5% or more.

Non-inferiority margin

defined as less than 2.5% on the basis of an expected event rate 5%

Lancet 2006;368;1239-47

SPACE

Outcome events up to 30 days

	Number (%)		Absolute diff.	Odds ratio
	CAS	CEA	CAS-CEA	CAS/CEA
	(n=599)	(n=584)	(90% CI)	(95% CI)
Primary endpoint	41	37	0.51*	1.09
	(6.84%)	(6.34%)	(-1.89 to 2.91)	(0.69 to 1.72)
Ipsilateral	39	30		1.26
ischemic stroke	(6.51%)	(5.14%)		(0.77 to 2.18)
Ipsilateral intra-	1	5		0.19
cerebral bleeding	(0.71%)	(0.86%)		(0.004 to 1.74)
Death	4	5		0.78
	(0.67%)	(0.86%)		(0.15 to 3.64)

***One-sided p value for non-inferiority is 0.09**

Conclusion

• SPACE failed to prove non-inferiority of CAS compared with CEA for the periprocedural complication rate.

• Results at 6-24 months are awaited

Lancet 2006;368;1239-47

SPACE

Limitation of SPACE trial

Actual difference (90% CI) for primary endpoint in SPACE Because upper CI is more than 2.5, study has failed to show non-inferiority for carotid angioplasty and stenting (CAS). However, because CIs cross zero, diff erence in primary outcome between carotid endarterectomy and carotid angioplasty and stenting was not statistically significant. *Lancet* 2006;368;1239-47

SPACE

Limitation of SPACE trial

- Only 27% (n=151) of patients used embolic protection devices
- The difference between the two treatments is very small and many people might feel that a difference of <u>only four events</u> in almost 600 patients per group is negligible

Lancet 2006;368;1239-47

Limitation of SPACE trial

- Despite SPACE being the biggest trial to date, one is left with the unavoidable conclusion that it was stopped prematurely.
- Notwithstanding funding issues, the planned margin of non-inferiority (<2.5%) was based on a power calculation of 1900 patients and this larger sample might have provided much tighter CIs and more robust statistical data.

Lancet 2006;368;1239-47

SPACE

Vascular Medicine Perspective: CEA versus Stent

- High risk symptomatic patient (>50%)
 carotid stenting is preferred and reimbursed
- High risk asymptomatic patient (>80%)
 carotid stenting is preferred and reimbursed
- <u>Normal risk symptomatic patient (>50%)</u>
 :CaRESS, SPACE, EVA-3S
 - More data are needed (CAVATAS-2, CREST)
- Normal risk asymptomatic patient (>80%)
 :CaRESS,

– More data are needed (CREST, ACT1)

Suggested Treatment algorythm

Patient Preference

Although all of us love our surgeons,

NOBODY loves surgery!

Now. Carotid Stenting

- Up to date, CS is at least equivalent results and a more preferred therapy to CEA with appropriate learning curve and the use of the protection device in *symptomatic and asymptomatic high surgical risk group*
- Technical progress, advance in technical expertise and *patients selection* are important to reduce the risk of CS
- CS may be extended to all patients subsets, such as symptomatic, asymptomatic, high risk, and low risk subgroups.