PCI for Renal Artery stenosis
Why should we treat Renal Artery Stenosis?
Natural History of RAS

RAS is progressive disease

<table>
<thead>
<tr>
<th>Study</th>
<th>Follow-up (months)</th>
<th>Pts</th>
<th>Progression N (%)</th>
<th>Total occlusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wollenweber</td>
<td>12 ~ 88</td>
<td>30</td>
<td>21 (70 %)</td>
<td></td>
</tr>
<tr>
<td>Meaney</td>
<td>6 ~ 120</td>
<td>39</td>
<td>14 (36)</td>
<td>3 (8%)</td>
</tr>
<tr>
<td>Dean</td>
<td>6 ~ 102</td>
<td>35</td>
<td>10 (29)</td>
<td>4 (11)</td>
</tr>
<tr>
<td>Schreiber</td>
<td>12 ~ 60</td>
<td>85</td>
<td>37 (44)</td>
<td>14 (16)</td>
</tr>
<tr>
<td>Tollefson</td>
<td>15 ~ 180</td>
<td>48</td>
<td>34 (71)</td>
<td>7 (15)</td>
</tr>
<tr>
<td>TOTAL</td>
<td>6 ~ 180</td>
<td>237</td>
<td>116 (49)</td>
<td>28 (14)</td>
</tr>
</tbody>
</table>

Renal Artery Stenosis

Clinical Consequences

Cardiovascular
- Angina pectoris
- “Flash” pulmonary edema
- Myocardial infarction
- Left ventricular hypertropy
- Stroke
- Aortic dissection

Renal
- Chronic renal insufficiency
- End-stage renal disease
Renal Artery Stenosis

4 year adjusted survival

% 100
80
60
40
20
0

89%
57%

No RAS RAS

Independent Predictor of Mortality

Conlon et al. Kidney Int 2001;60(4):1490-7
Severity of RAS vs Survival

Severity of Stenosis

4 year adjusted survival

%
70% 68% 48%

50% 75% > 95%

Conlon et al. Kidney Int 2001;60(4):1490-7
Why should we treat Renal Artery Stenosis?

Improve Morbidity / Mortality

- Salvage Renal Function
- Adequate BP Control
Medical Treatment

Aggressive pharmacologic therapy is sufficient for adequate BP control and maintenance of renal function?
Outcome of RAS

Medical treatment

69 pts with RAS > 70%, Follow-up 36 Mo

• Mean Cr : 1.4 → 2.0 mg/dl (p<0.05)
• SBP : 157 mmHg → 155 mmHg (p=NS)
• 10 % progressed to ESRD
 10 % progressed to renal intervention
 29 % mortality

Outcome of RAS
Managed without Revascularization

Renal Insufficiency can be progressive despite aggressive BP control
Renal Artery Stenosis

Rationale for Invasive Treatment

- Progressive disease
- Cause of hypertension and decline in renal function
- Associated with increased mortality
- Limited benefit of aggressive medical therapy
Renal Artery stenosis

Should we stent it?
POBA vs Stent

- Initial Success: 57% (Balloon) vs 88% (Stent)
- 6 mo Patency: 29% (Balloon) vs 75% (Stent)

*P< 0.05

Renal Artery Stenting

Technical Success

<table>
<thead>
<tr>
<th>Study series</th>
<th>No. of Arteries</th>
<th>Ostial Lesion(%)</th>
<th>Success (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rodriguez-Lopez</td>
<td>125</td>
<td>66</td>
<td>98</td>
</tr>
<tr>
<td>Henry</td>
<td>104</td>
<td>77</td>
<td>99</td>
</tr>
<tr>
<td>Rocha-Singh</td>
<td>180</td>
<td>43</td>
<td>98</td>
</tr>
<tr>
<td>Tuttle</td>
<td>148</td>
<td>100</td>
<td>98</td>
</tr>
<tr>
<td>Dorros</td>
<td>202</td>
<td></td>
<td>99</td>
</tr>
</tbody>
</table>

~ 98%

Lim and Rosenfield, Curr Int Cardiol 2000;2:130-9
Renal Artery Stenting

Restenosis

<table>
<thead>
<tr>
<th>Study (year)</th>
<th>RA evaluated (% original total a.)</th>
<th>F/U (mo)</th>
<th>Restenosis (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>van de Ven</td>
<td>52 (95%)</td>
<td>6</td>
<td>21</td>
</tr>
<tr>
<td>Rocha-Singh</td>
<td>158 (88%)</td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>Rundback</td>
<td>28 (52%)</td>
<td>12</td>
<td>26</td>
</tr>
<tr>
<td>Tuttle</td>
<td>49 (33%)</td>
<td>8</td>
<td>14</td>
</tr>
<tr>
<td>White</td>
<td>80 (60%)</td>
<td>9</td>
<td>19</td>
</tr>
</tbody>
</table>

~20%

Lim and Rosenfield, Curr Int Cardiol 2000;2:130-9
Renal Artery Stenting

- Technically Feasible
- Safe & Durable
- Superior to Balloon
Renal Artery Stenting

However, is it effective in improving hypertension & slowing progressive decline in renal function?
Renal artery stenting?

Effect on hypertension
BP Change after Stenting

BP Change by Baseline BP

P < 0.001
R² = 0.43

Renal Artery Stenting

Effect on Hypertension

<table>
<thead>
<tr>
<th>Study series (year)</th>
<th>No.</th>
<th>Cure (%)</th>
<th>Improved (%)</th>
<th>Benefits (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tegtmeyer</td>
<td>65</td>
<td>23</td>
<td>71</td>
<td>94</td>
</tr>
<tr>
<td>Klinge</td>
<td>134</td>
<td>10</td>
<td>68</td>
<td>78</td>
</tr>
<tr>
<td>Martin</td>
<td>94</td>
<td>22</td>
<td>46</td>
<td>68</td>
</tr>
<tr>
<td>Lossino</td>
<td>153</td>
<td>12</td>
<td>51</td>
<td>63</td>
</tr>
<tr>
<td>Rodriguez-Perez</td>
<td>37</td>
<td>0</td>
<td>81</td>
<td>81</td>
</tr>
<tr>
<td>Blum</td>
<td>74</td>
<td>16</td>
<td>62</td>
<td>78</td>
</tr>
<tr>
<td>Pooled Result</td>
<td>586</td>
<td>14</td>
<td>63</td>
<td>~77%</td>
</tr>
</tbody>
</table>
Effect on hypertension

Cure 12 ~ 23 %
Improved 46 ~ 81 %
Renal artery stenting

Can We Salvage Renal Function?
Stabilization of Renal Function

Reciprocal serum creatinine plot

Post Stent

Natural course

Renal Artery Stenting

Effect on Renal Function

<table>
<thead>
<tr>
<th>Study</th>
<th>No</th>
<th>Improved (%)</th>
<th>Stable (%)</th>
<th>Deteriorated (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Van de Ven</td>
<td>42</td>
<td>12</td>
<td>62</td>
<td>26</td>
</tr>
<tr>
<td>Rocha-Singh</td>
<td>150</td>
<td>22</td>
<td>70</td>
<td>8</td>
</tr>
<tr>
<td>Tuttle</td>
<td>129</td>
<td>15</td>
<td>81</td>
<td>4</td>
</tr>
<tr>
<td>Dorros</td>
<td>163</td>
<td>18</td>
<td>48</td>
<td>34</td>
</tr>
<tr>
<td>Rundback</td>
<td>45</td>
<td>20</td>
<td>47</td>
<td>33</td>
</tr>
<tr>
<td>Harden</td>
<td>32</td>
<td>34</td>
<td>38</td>
<td>28</td>
</tr>
<tr>
<td>TOTAL</td>
<td>561</td>
<td>19%</td>
<td>62%</td>
<td>19%</td>
</tr>
</tbody>
</table>

Lim and Rosenfield, Curr Int Cardiol 2000;2:130-9
Renal Artery Stenting

Effect on Renal Function

- Improved: 23 ~ 41%
- Stabilized: 29 ~ 100%
- Deteriorated: 5 ~ 38%
Renal Artery Stenting

- Technically Feasible
- Safe & Durable
- Superior to Balloon
- Effective in improving HTN
- Beneficial to preserve renal function
Renal Artery Stenting
Superior to Surgery?

No Randomized Trials of Renal Artery Stenting vs Surgery
Surgical Revascularization

Aorto-renal bypass
Renal endarterectomy

<table>
<thead>
<tr>
<th>Condition</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Death</td>
<td>2 ~ 6 %</td>
</tr>
<tr>
<td>MI</td>
<td>2 ~ 9 %</td>
</tr>
<tr>
<td>Stroke</td>
<td>0 ~ 3 %</td>
</tr>
<tr>
<td>Bleeding</td>
<td>2 ~ 3 %</td>
</tr>
<tr>
<td>Cholesterol Emboli</td>
<td>1 ~ 4 %</td>
</tr>
</tbody>
</table>

Late Results of Surgery

5 year results

- Graft failure 6 ~ 18 %
- Reoperation 5 ~ 15 %

Renal artery stenting

- Acute success rate > 98%
- Restenosis < 15%
Renal Artery Stenting

- Technically Feasible
- Safe & Durable
- Superior to Balloon
- Effective in improving HTN
- Beneficial to preserve renal function
- Safer than surgery
- FDA approved (July 10, 2002)
Renal artery stenting
Long-Term Survival
Do All Benefit?
Survival after Stenting

Categorized by baseline Creatinine

Survival (%)

- **Cr ≤ 1.5 mg/dl**
- **Cr 1.5~1.9 mg/dl**
- **Cr ≥ 2.0 mg/dl**

Years

Survival after Stenting

Unilateral vs Bilateral Stenosis

*P < 0.01

Survival after Stenting

4 year survival (N=1058)

Baseline creatinine

- Cr ≤ 1.4 mg/dL 85±3% (622)
- 1.5 - 1.9 mg/dL 78±5% (168)*
- Cr ≥ 2.0 mg/dL 49±5% (268)*

*P< 0.05

Survival after Stenting

4 year survival (N=1058)

<table>
<thead>
<tr>
<th>Baseline creatinine</th>
<th>Unilateral</th>
<th>Bilateral</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr ≤ 1.4 mg/dL</td>
<td>86±3% (397)</td>
<td>85±7% (225)</td>
</tr>
<tr>
<td>1.5 - 1.9 mg/dL</td>
<td>78±7% (103)</td>
<td>78±5% (65)</td>
</tr>
<tr>
<td>Cr ≥ 2.0 mg/dL</td>
<td>49±5% (173)</td>
<td>49±5% (95)</td>
</tr>
</tbody>
</table>

Renal Artery Stenting

Beneficial impact on survival

Renal artery stenting before the onset of renal dysfunction !!!
“Dark side” of Renal Artery Stenting

Atheroembolism...
Incidence of Atheroembolism

During Renal Artery Stenting

<table>
<thead>
<tr>
<th>Study</th>
<th>No</th>
<th>Embolism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Van de Ven</td>
<td>42</td>
<td>7 %</td>
</tr>
<tr>
<td>Rocha-Singh</td>
<td>42</td>
<td>5.9 %</td>
</tr>
<tr>
<td>White</td>
<td>150</td>
<td>2 %</td>
</tr>
</tbody>
</table>
Promoting Factors of Atheroembolism

Procedural
- Length of the procedure
- Difficulties of the procedure
- Size of the devices
- Primary stenting
- High pr. dilatation
- Guiding catheter intubation

Clinical
- Elderly (> 60 years)
- Male
- Renal insufficiency
- Multisegment dis
- Associated aorta / peripheral lesions
- Anticoagulants – Fibrinolytic drugs
Distal Protection During Renal Artery Stenting

Will it make a difference?
Should we use it?
Distal Protection
(Pilot Study)

Stent with PercuSurge GuardWire

28 pts, 32 renal arteries (29 ostial lesions)

- Debris retrieved in all (Success 100%)
- At 6-mo F/U,

 Renal function deterioration: 0 pts
 Improvement: 5 pts

Distal Protection may prevent renal insufficiency after procedure.

In Conclusion

Renal Artery Stenting

• Effective and Safe
• Sustained Benefit
• Choice for Complex Renal Artery Stenosis
Renal Artery Stenting

In the near future....

Outcomes will be advanced by

- Improved stents/delivery systems
- Distal protection device
- Drug – eluting stent