Cypher vs TAXUS TAXUS vs Cypher

Seung-Jung Park, MD, PhD, FACC Professor of Internal Medicine Asan Medical Center, University of Ulsan,

Seoul, Korea

Drug Eluting Stent

- Drug
- Polymer
- Stent design

Drug Eluting Stent

Drug

Ideal Drug?

- Wide therapeutic dose range for least toxicity in local administration
- Ability to inhibit smooth muscle proliferation
- Allow normal endothelization of stent
- Low inflammatory response
- Controlled release

TAXUS vs Cypher

Drug

Cytostatic? Cytotoxic?

Multiple Actions of Sirolimus

Paclitaxel inhibits cell processes dependent on microtubule turnover including mitosis, cell proliferation and cell migration while the cells remain viable.

Dose Comparison

Concent	tration*	Ther.	Window
	duoii		

Guidant - Act D

BSC - Taxol

Cook - Taxol

Cordis - Sirolimus

2.5, 10

50

15, 30, 60, 90

180

2.5 - 60

15 - 90

15 - 90

35 - > 430

Concentration* ug/stent

* Used in clinical trials. Average dose for 15 - 18 mm length stent.

In vivo Vascular compatibility TAVUS vs Cypher

Complete healing, re-endothelization, minimal inflammation...

Cypher vs TAXUS

Sirolimus

- Immunosuppressive
- Interrupts TOR
 pathway and prevent
 down regulation of p27
- Reduce proliferating SMC
- Reduce inflammatory cell activities

Paclitaxel

- Antiproliferative
- Microtubular stabilization
- Reduce proliferation and migration of SMC
- Reduce secretion of extracelluar matrix

Comparison of Two Drugs

- Experimental data showed that both drugs have similar effectiveness for preventing intimal growth with preservation of reendothelization in appropriate therapeutic dose.
- In current doses of drug eluting stents, both drugs have cytostatic activity rather than cytotoxic.

Drug Eluting Stent

- Polymer

Why Polymer coating?

- 1. Consistent dosing
- 2. Controlled release kinetics
- 3. Structural integrity

TAXUS vs Cypher

Polymer

*PEVA with Sirolimus

Diffusion Barrier

Single layer

Translute

Stent

Basecoat

polymer + drug

Dual layer

Basecoat = polymer + drug Topcoat = diffusion barrior

TAXUS Controlled Moderate or Slow Release

Cypher

Controlled Drug Release in Porcine Study

In Vivo Release Kinetics

Vascular Inflammation

Fast release vs. Slow release

Fast release

Slow release

Non-Polymer SUPRA G stent (Cook)

In vivo Paclitaxel Elution

Faster Release?

Binary Restenosis -Dose response

6-Month QCA Results:

Why could they not demonstrate the same efficacy of the Non-polymer Paclitaxel eluting stents in DELIVER?

By chance or inevitable?

Comparison of Two Polymers

- Both DES system use different polymers for effective drug delivery.
- Preclinical data showed that both DES systems achieved safe, effective, controlled, and slow drug diffusion into surrounding tissue without initiating tissue-polymer reaction.

Drug Eluting Stent

- Drug
- Polymer
- Stent design

NIR

TAXUS I TAXUS II TAXUS III

Express

TAXUS IV TAXUS V TAXUS VI

Bx Velocity

RAVEL SIRIUS

Late LossBy Stent Design of Bare Metal Stent

No significant difference in terms of stent design and thickness

Comparison of Two Stents

Theoretically both stents might be good stent platforms for even drug delivery to arterial wall.

Cypher vs TAXUS TAXUS vs Cypher

Comparison of Clinical Data

Different Study Patients

0/0	TAXUS II SR	TAXUS II MR	RAVEL	SIRIUS	
Number	131	135	120	1,100	
Age (yr)	61.5	59.3	60	62	
Male	70	76	81	73	
Risk factors					
Diabetes	11	17	21	25	
Hypertension	63	60	61	68	
PMI	35	39	34	28	
Hyperchol	NA	NA	43	73	
Smoking	21	24	33	18	
Unstable Angina	35	30	48	NA	
Multi-vessel	NA	NA	75	42	
IIb/IIIa use	NA	NA	11	60	

Different Study Design

	TAXUS II SR	TAXUS II MR	RAVEL	SIRIUS
Sponsor	Boston	Boston	Cordis	Cordis
Drug	Paclitaxel	Paclitaxel	Sirolimus	Sirolimus
Dose	1.0 ug/mm²	1.0 ug/mm²	185ug	185ug
Polymer	Translute	Translute	2 coat	2 coat
Release	Slow	Moderate	Slow	Slow
Stent platform	NIRx	NIRx	Bx Velocity	Bx Velocity
length (mm)	15	15	18	18
Dia (mm)	3.0 & 3.5	3.0 & 3.5	2.5,3.0,3.5	2.5,3.0,3.5
Lesion length	≤ 12mm	≤ 12mm	≤ 18	≤ 30
Dia. (mm)	\geq 3.0, \leq 3.5	≥3.0, ≤3.5	≥2.5, ≤3.5	\geq 2.5, \leq 3.5

Different Study Design

%	TAXUS II SR	TAXUS II MR	RAVEL	SIRIUS
Number	131	135	120	1,100
Location				
LAD	40	42	49	45
LCX	38	33	27	25
RCA	22	25	24	30
Lesion characteristics				
Type A	32	NA	8	7
Type B1	39	NA	39	34
Type B2	29	NA	54	33
Type C	0	0	0	26
Multiple stent	5	4	3	35

Reasonable Comparison Would be ...

TAXUS II vs RAVEL TAXUS IV,V vs SIRIUS

TAXUS I

De novo, 3.0 and 3.5 mm
61 pts at 3 sites
1:1 Randomization (31 coated, 30 bare)

	TAXUS NIR	Bare
30 day MACE	0 %	0 %
Restenosis Rate	0 %	10 %
6-month MACE	0 %	7 %

TAXUS II vs. RAVEL

Reference Size

Slightly larger in TAXUS II than in RAVEL

TAXUS II vs. RAVEL

Lesion Length

TAXUS II vs. RAVEL

Post MLD

TAXUS II vs. RAVEL

Late Loss

TAXUS II vs. RAVEL

Loss Index

Definition of Restenosis

Angiographic follow-up

Proximal←In stent → Distal

In segment

TAXUS II vs. RAVEL

In-Segment Restenosis

TAXUS II vs. RAVEL

Long-Term Result

12 months MACE

TAXUS II & RAVEL have comparable risk factors

	RAVEL		TAXUS II-SR	
15.8 %		Diabetic	10.7 %	
	9.6 mm		10.5 mm	1
18 mm		Stent length	15 mm	
	2.43 mm	Post MLD	2.54 mm	
		Efficacy		
	-0.01	Late Loss	0.31 mm	
ction	0%	Restenosis Rate	5.5%	
100 %		Restenosis Rate	75 %	6
80 %		MACE	49 %	
	0%	SAT(<360days)	1.6%	
	18 mm 18 mm 100 %	15.8 % 9.6 mm 18 mm 2.43 mm -0.01 0% 100 % 80 %	9.6 mm 18 mm Stent length 2.43 mm Post MLD Efficacy -0.01 Late Loss Restenosis Rate 100 % Restenosis Rate 80 % MACE	15.8 % Diabetic 10.7 % 9.6 mm Lesion length 10.5 mm 18 mm Stent length 15 m 2.43 mm Post MLD 2.54 mm Efficacy -0.01 Late Loss 0.31 mm Restenosis Rate 5.5% 100 % Restenosis Rate 75 % 80 % MACE 49 %

TAXUS II versus SIRIUS

Reference Size

Lesion Length

Different Study Subjects

%	TAXUS II SR	TAXUS II MR	RAVEL	SIRIUS
Number	131	135	120	1,100
Location				
LAD	40	42	49	45
LCX	38	33	27	25
RCA	22	25	24	30
Lesion characteristics				
Type A	32	NA	8	7
Type B1	39	NA	39	34
Type B2	29	NA	54	33
Type C	0	0	0	26
Multiple stent	5	4	3	35

Post MLD

Late Loss

Loss Index

In-Stent Restenosis

In-Segment Restenosis

Proximal Edge Restenosis

Distal Edge Restenosis

Relative Reduction

In-Hospital MACE

12 months MACE

TAXUS II versus SIRIUS

Let's see Relative Reduction...

Restenosis Rate of bare metal NIR stent may be better than that of Bx Velocity?

Relative Reduction of In-segment Restenosis Rate

Relative Reduction of Restenosis Rate in the Proximal and Distal edge

Relative Reduction of 12 months MACE

Relative Reduction

TAXUS II & SIRIUS have different study patients. We are waiting the long-term data about the TAXUS IV, V, and VI

TAXUS II versus SIRIUS

Subgroup Analysis

Enrollment of Diabetes

TLR in Diabetics

TAXUS II 6 months

SIRIUS 9 months

■Paclitaxel **■** Control

In-segment Restenosi in Small Vessels (≤ **2.5**mm)

Relative Reduction

TAXUS II versus SIRIUS

IVUS Analysis

Neoinitimal Hyperplasia Volume inhibition may be better in Cypher ...

The incidence of the Late Stent Inapposition was similar between both trials, which did not cause serious cardiac events.

DES for ISR

	TAXUS III	Brazil	Rotterdam
No (pts)	28	25	16
Lesion length (mm)	13.6		18.4
Restenosis Rate (%)	16	4	20
TVR	21	0	12.5
MACE	29	0	
Death	0	0	12.5
SAT	0	0	

K Tanabe, Circulation 2003;107 Degertkin M.JACC 2003;41:184

Multivessel disease Long lesion

Bifurcation lesion

Stable angina
Single vessel disease

In-stent Restenosis

SVG CTO

Diabetic patients Left main disease

Ostial disease

More complex patients, more complex lesions would be challanged in real world practice.

Different Stent, Different Design...

Cypher vs TAXUS TAXUS vs Cypher

- Two stents would be good enough in the simple lesion subsets based on the current studies.
- We need more data about real world lesion subsets and patients subsets. (TAXUS Express IV,V,VI)
- Economic factors will play an important role in strategic case-based decision-making.