Should We Expect "Late Catch-up" (Late Restenosis) after DES Treatment ---- Is the Genie out of the Bottle? You have Simply Postponed the Inevitable Angioplasty Summit 2004 30th April, 2004

Renu Virmani, M.D. Armed Forces Institute of Pathology, Washington, DC

What is the problem and why we need Drug-Eluting Stents

- Incidence of in-stent restenosis by angiography as high as 30 to 40%
- Incidence of clinical symptomatic restenosis is close to 10 to 15%
- Of the 81 patients who died >3 months following stenting, 57 (70%) patients had ISR, and of these 25 patients (40%) died from severe coronary disease elsewhere (with or without thrombus 17 patients) and from non-cardiac death (8 patients).

In-Stent Restenosis and Sudden Coronary Death

* Post PCI for Instent Restenosis in 5, Post CABG in 5, additional CAD in 5, acute thrombus in 3

Drug-Eluting Stents Comprise a Three-Component System

Drug (lipophylic), binds to tissues better than to blood, Cytostatic, and allows endothelialization while suppressing smooth muscle cell proliferation and migration Polymer that does not induce inflammation but allows rapid release followed by slow release of drug over a long period

Polymer Based Drug Delivery

* Biodegradable

- *Polyglycolic acid/polylactic acid copolymer
- Polycaprolactone
- *Polyhydro-butyrate/-valerate copolymer
- Polyorthoester
- Polyethyleneoxide/polybutylene terephthalate copolymer
- *Copolymeric polylactide

*Nonbiodegradable

- Polyurethane
- Poly(dimethyl)-siloxane
- Polyethyene terephthalate
- Polyethylene-vinyl acetate copolymer (PEVA)
- Ethylene vinyl alcohol (EVAL)
- Ethylene vinyl acetate (EVA)
- Poly Butyl Methacrylate (PBMA)
- Phosphorylcholine (PC)

Non-Bioerodable Polymer

Bioerodable Polymer

Restenosis Processes and Inhibitors

Morphologic Changes Observed with Various Drugs Used on Stents in Preclinicl Studies Performed in Animals Sirolimus Paclitaxel Actinomycin-D

Lessons From Preclinical Studies of DES Undesirable Effects of DES

Stent Malapposition

Hypersensitivity

Impaired Arterial Healing

Neointimal Area mm²

3.5

3 2.5

1.5

0.5

3Days

Pathology of Drug Eluting Stents in Humans

A rare glimpse!!

Human Atherectomy specimens Examined from patients who had received QuaDS-QP2 (7-Hexanoyltaxol)-Eluting Stent or TAXUS Stent

QuaDS-QP2 (7-Hexanoyltaxol) Stent

- Registry of 15 patients with ISR
- 6 months: 3 TLR's, angiographic restenosis 13.3%
- 12 months: Angiographic restenosis in 61.5% (late, late lumen loss)
- In-stent DCA specimens reviewed in 5 pts.
 - 11.2 \pm 1.0 months post-stenting
- Mechanisms
 - Toxicity of high drug dose
 - Reaction to plastic sleeve

Liistro et al. Circulation 2002; 105: 1883 Virmani et al. Circulation 2002; 106

Atherectomy From Patient Treated with QuaDS-QP2 for Recurrent In-Stent Restenosis

Patient 2

"Taxane" a paclitaxel derivative 2400 µg for 13 mm stent length Virmani et al. Circulation 2002

Morphometric Assessment of Atherectomy Specimens From Patients Treated with QuaDS-QP2 for Recurrent In-Stent Restenosis at 11 months

*Proliferative index in the restenotic area without inflammation. In the two cases with marked inflammation (patients 1 and 2), the proliferative index was 5.2 and 4.7 respectively. [α -Actin= smooth muscle cells, CD68= macrophages, CD45RO= T cells.]

Virmani et al. Circulation 2002

60-year -old man 6 mo post stent deployment A TAXUS DCA

Increased chronic inflammation & hemosiderin

TAXUS DCA

KP-1 (Mac)

BMS DCA

Is there a problem with Boston Scientific's TAXUS? (NY Times 23rd April, 2004)

- 27 to 30 patients had adverse events involving the Taxus stent caused by an inability to separate the balloon from the expanded Stent.
- Of these 5 patients had to undergo surgical removal of the device with coronary endarterectomy and bypass surgery.
- A French report from 2 catheterization laboratories (Lyon and Brest) that performed bench tests claim:
 - Paclitaxel coating is sticky and non uniform leading to mechanical difficulties after stent implantation.
 - Paclitaxel local concentration may vary within the stent
 - Manufacturers quality control is questioned

Lynne Peterson, April 2004, Trend's in Medicine

Patient underwent endarterectomy after a TAXUS stent placement that resulted in a dissection, an **Express stent was** placed however, the dissection extended and a second Express was placed. While withdrawing the balloon it got stuck at the **TAXUS** stent and had to be removed surgically.

ACTION STUDY Actinomycin-D Eluting Stent

- 2.5 and 10 μ g/stent
- Increased in-stent and stent edge neointimal growth
- Increased TLR
- Increased MACE
- Trial halted

Patrick W. Serruys, JACC, In Press

Table 1. Morphologic analysis of lesion components and cell proliferation inhuman atherectomy specimens from actinomycin D-eluting stents

	Age (years)	Area (mm²)	SMCs (%)	МФs (%)	T-cells (mm2)	Fibrin (%)	Ki-67 (%)
Restenosis							
Pt. 1	58	13.28	12.6	0.08	0.08	5.9	0.13
Pt. 2	63	10.90	18.3	0.10	0.10	1.0	0.43
Pt. 3	78	2.80	3.8	0.17	0	26.0	0.81
Pt. 4	-	11.69	1.4	0	0	0.1	0.38
Total		9.67±4.69	9.0±7.8	0.09±0.	07 7.8±9	.7 8.2±12	.1 0.44±0.28

* Two patients received actinomycin-D dose 2.5 μg/cm², one 10 μg/cm² and one unknown. At trial mandated 6-months follow-up severe stenosis was found in all 4 patients and underwent DCA.

John Ormiston 2004

Atherectomy From a Patient with In-stent Restenosis in an Actinomycin D Eluting Stent

AFIP Experience at Autopsy Following Cypher Stent Placement

Patient age/Se	Indication	СА	Interval stent to †	Cause of death	Thrombus at stent site	Inflammation
37 F	MI (non-Q)	LAD/LOM &LCx	7 days	AMI	Occlusive	Minimal
51 M	AP with in-stent restenosis	LCx & distal RCA	10 days	SD -CAD	Minimal	Occasional
65 M	Recent AMI	LAD prox	38 days	Stroke, stent thrombosis	Occlusive	Absent
61 M	AMI	LCx/ PD	4 months	SD-CAD	Non-occlusive	Severe
71 F	Asymptomatic	LAD	16 months	Stroke -AMI	Small thrombus side branch	Occasional giant cells
58 M	UAP (E-SIRUS)	LCx	18 months	AMI thrombus	Occlusive	Severe
61 M	Asymptomatic, (FIM)	RCA	4 year (AS+MS, 1year †)	Plaque rupture- stroke	None	Minimal

October 29, 2003 FDA Advises Physicians of Adverse Events Associated with Cordis CYPHERTM Stents

- CYPHERTM stent approved in April 2003 for patients undergoing PCI, since its approval 450,000 units have been distributed worldwide (>260,000 US and >180,000 Outside US). To date FDA has received 290 reports (>260 US and >25 Outside US) involving subacute (occurring between 24 hours and 30 days post procedure) thrombosis (SAT) associated with CYPHERTM stent. More than 60 reports of SATs were associated with patient death. Also, more than 50 reports, including some deaths, that Cordis considers possible hypersensitivity reactions.
- "We have received numerous reports of adverse events for CYPHERTM stent through MDR system, which is subject to significant under reporting."

FDA Talk Paper, 2003

•

37-year old white woman with CAD, hyperlipidemia (total cholesterol 252, HDL 27, triglycerides 442 mg/dl) and cigarette smoker; developed chest pain and had a non-Q wave myocardial infarction 10 days antemortem. Cardiac catheterization: Severe LAD and LCX disease and occluded RCA

Multivessel stenting performed:

Two ZETA stents placed in mid-RCA 8 days antemortem
CYPHER stent placed in mid-LCX 7 days antemortem
CYPHER stent placed in mid-LAD + bifurcation stenting of LD (PC-coated BiodivYsio) 7 days antemortem
Presented to ER on day of expiration with chest pain and ECG evidence of acute anterior MI followed by cardiac arrest.

CypherTM Stent in Left Circumflex and Left Anterior Descending Coronary Arteries and BiodivYsio Stent in Left Diagonal

Clinical: AMI & Cardiac arrest 7 days post-CYPHER

Pathology: Patent CYPHER Stent in Mid-LCX

Adventitia

Platelet thrombus + acute inflammation

A. Farb, R. Virmani, AFIP, Washington, DC

Causes of subacute thrombosis -CYPHER ?

- Polymer peeling off the stent during deployment
- ✓ Under expansion of the stent
- Small stent used in a larger vessel-cracking of polymer
- ✓ Drug?

Inappropriate location chosen for stent bifurcation, crush technique

65-year old male with CYPHER stent placed post AMI; 33 days later presented with stroke, anticoagulants stopped patient died 38 days post stenting.

Absence of healing

61 year-old male with hypertension and hyperlipidemia presented with acute coronary syndrome 4 months before death. Catheterization:
99% stenosis of PDA, CYPHER stent placed 2.5x18 mm.
1 month before death catheterization repeated for positive stress test - No restenosis.

Sudden death after complaining of dyspnea and diaphoresis

PDA just proximal to CYPHER stent

CYPHER stent - 4 months duration

IVUS observations in CYPHER

- Incomplete Apposition of Stent
 RAVEL DES stents = 10/48 (21%)
 Uncoated Bx Velocity Stents = 2/47 (4%)
 SIRIUS DES stents = 7%
 - Uncoated Bx Velocity = 0%

Serruys PW, et al. Circulation 2002;106: 798

A 58-year old man was first seen on 12/20/01 with UAP. He was a smoker, non-diabetic, non-hypertensive. Coronary angiography showed:

-95% narrowing with >20mm long lesion in prox and mid LCX

- -70% mid LAD, and non-critical lesion in prox RCA
- 2 CYPHERTM stents (3.0x18 and 2.5x18 mm) stents implanted following PTCA (2.5 at 12-14 ATM), with overlap. IVUS showed stent well apposed to the wall without mal-apposition.
- 1/10/02 skin rash- trunk, ankle, and wrist with itching and irritation interpreted as secondary to ticlopidine and patient switched to clopidogrel. Rash resolved.
 - 8 months post-stenting protocol driven angiography and IVUS, no in-stent stenosis nor neointimal formation
- 6/9/03 patient experienced epigastric CP of >20 min duration
 - with a syncopal episode, recovered. Developed recurrent intermittent CP admitted to CCU on 6/13/03, DX recent non-Q wave MI.
 - 6/16/03 angiography, LCX total occlusion (TIMI 1), could not be crossed, LAD 85%, RCA 90%. While attempting to cross RCA patient arrested and could not be resuscitated.

58-WM enrolled in E-SIRUS for UA (Dec 2001) presented 18 month later with CP for 4 d

Pre procedure

Long LCx lesion (70% stenosis)

Post-Implant

18 months post SRL stent

8 months post SRLstent

2 CYPHER stents placed in LCx 3x18 mm and 2.5x18 mm, without much overlap

Giulio Guagliumi, MD

ICUS Analysis, Cardialysis Rotterdam

Vessel Volume mm³407462Stent Volume mm³187194Plaque behind stent mm³221269Neointimal Volume mm³00.7% Stent Volume Obstruction mm³-

Baseline 8 Months

Gross Findings in the Heart

No overlap

Cardiac rupture seconary to AMI

Proximal Stent

Medial destruction

Inflammation

Foreign body giant cell reaction

Distal Stent

Chronic Inflammation

Eosinophils (Luna stain)

T-Lymphocytes (UCHL)

Selected Non-Stented Native Coronary Artery with Sever Stenosis

Distal LCx

All native arteries showed inflammation typical of atherosclerosis. None of the non-stented coronary arteries showed an eosinophilic inflammatory reaction.

Mid LAD

Proximal RCA

Causes of Adventitial, Medial and Intimal Inflammation ([^]eosinophils) limited to the area of the Stent: Hypersensitivity reaction to drug? Version of the polymer? Part of atherosclerosis

Infection

Adverse side effects to <u>Sirolimus</u> mostly limited to: bone-marrow suppression, hypercholesterolemia and triglyceridemia. Other reported side-effects include hypocalemia, hyperglycemia, diarrhea, and abnormal liver function tests. Hypersensitivity has been reported in one patient following Sirolimus.

Granulomatous reaction seen in 12.5 and 35% of CYPHER Stents Implanted for 28 and 90 days in Pig Coronary Arteries

Stent Mal-apposition and Plaque Expansion is Related to Hypersensitivity to CypherTM Stent (polymer) in Selected Patients?

• CYPHERTM polymer is non-erodable consisting of copolymer poly-n-methacrylate (PBMA) and polyethylenevinyl acetate (PEVA). PBMA a component of bone cement when implanted subcutaneously results in a macrophage and giant cell reaction accompanied by tissue damage and fibrosis. PEVA in rabbit elicits an intense inflammation in 25% of animals subjected to subcutaneous or intramuscular implants.

Clinical History Case 7

- 61-yrs old man received SRL-Eluting Stent (Fast Release) in RCA 4 years prior to death
- Angio and IVUS at 4 months, 1 year, and 2 years showed minimal neointimal growth in mid-stent
- AVR and MVR 1 year prior to death
- Presented with cardiac arrest & suffered severe cerebral damage
- Angio showed widely patent stent and no change in neointimal growth
- Developed brain death and expired

Sousa JE, et al. Circulation 2004

RCA FIM SRL-Eluting Stent (Fast Release) 4-Years Post-Deployment

Post-Mortem Radiographs Sousa JE, et al. Circulation 2004

Thin healed neointima

Strut + Polymer (polarized light)

RCA FIM SRL-Eluting Stent (Fast Release) 4-Years Post-Deployment *Struts in necrotic core

Uncovered strut at branch ostium

Sousa JE, et al. Circulation 2004

Non-Stented Arteries

Proximal LAD Plaque Rupture

PDA Nodular Calcification

Drug Eluting Stents

Conclusion:

- DES reduce neointima upto 12-24 months but will the effect be permanent!!!!
- Drug-Eluting Stents only Delay the Inevitable late clinical results done carefully will fail to show long-term benefit
- May Even in Sensitive Patients Cause Harm by:
 - Thrombosis (early and late)?
 - Inflammation induced by the polymer or through toxic effect of drug resulting in positive remodeling and stent malapposition!!
- Safest, to design better stents and in combination with oral therapy will reduce restenosis until better polymer/drug combination are available!!!

Morphologic Predictors of Poor Outcome in Drug Eluting Stents

 Persistent poor endothelialization
 Excessive thrombus
 Medial necrosis ± stent malapposition
 Excessive inflammation
 Hypersensitivity reaction

"Science is always wrong. It never solves a problem without creating ten more."

George Bernard Shaw (1856-1950), Irish dramatist and critic

Acknowledgments

- Andrew Farb, M.D..
- Frank Kolodgie, Ph.D.
- Allen Burke, M.D
- Russ Jones
- Robert Kutz, M.S.
- Deena Weber, M.S.
- You-hui Liang, M.D.
- Hedwig Avallone
- Lila Adams
- Rosalind Mathew
- Leslie Keefer

Comparison of 7 days Bare SS Stent Implant to 28 days Sirolimus-Eluting Stent and Bare SS Stent

Bare Stainless Steel (SS) stent at 7 days

Sirolimus-eluting stent at 28 days

PIG NORMAL CORONARY ARTERIES

Bare SS stent at 28 days

Sirolimus-Eluting Stent Implanted in Human Coronary Artery for 16 Months: Pathologic Findings Giulio Guagliumi, Andrew Farb, Giuseppe Musumeci Orazio Valsecchi, Maurizio Tespili, Teresio Motta, Renu Virmani, M.D.

D

Sirolimus-Eluting Stent Implanted in Human Coronary Artery for 16 Months: Pathologic Findings

B

Well-healed neointima
Very small thrombus at side branch

Fibrin w/strut
embedded in core
Minimal inflammation

>80% surface endothelialization>Loose intercellular junctions

 α -actin

≻Rare minute platelet aggregates