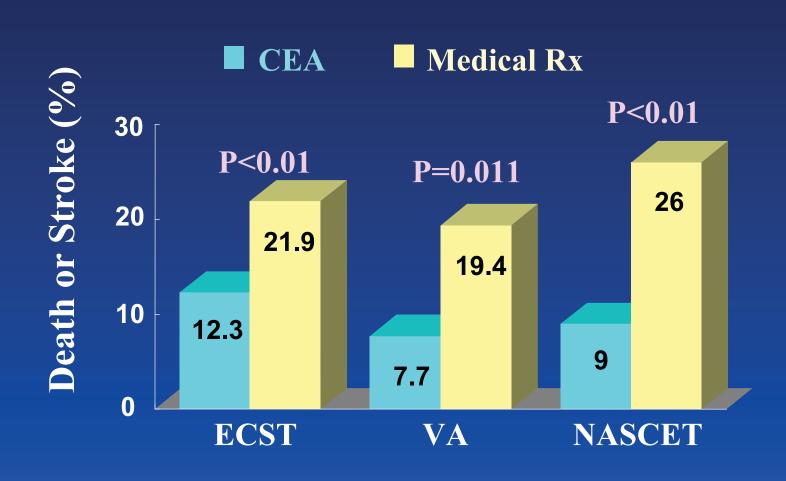
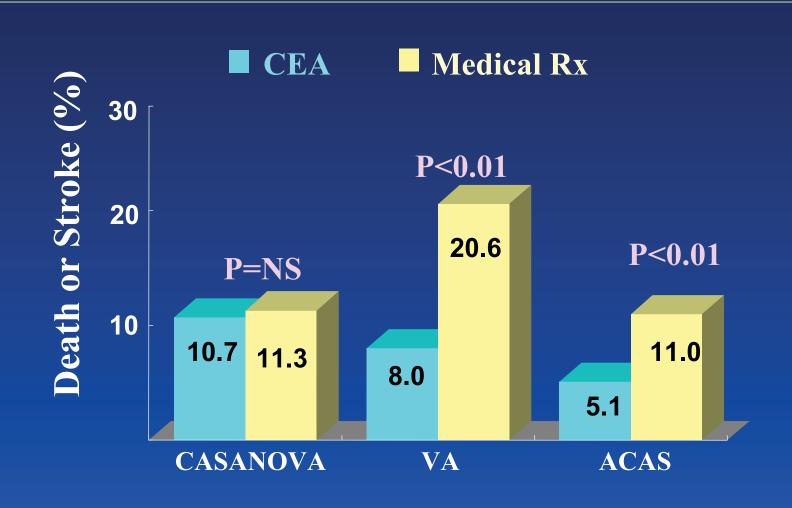
Carotid Artery Stenting

Is it a standard therapy for carotid stenosis?

Natural history of the carotid stenosis

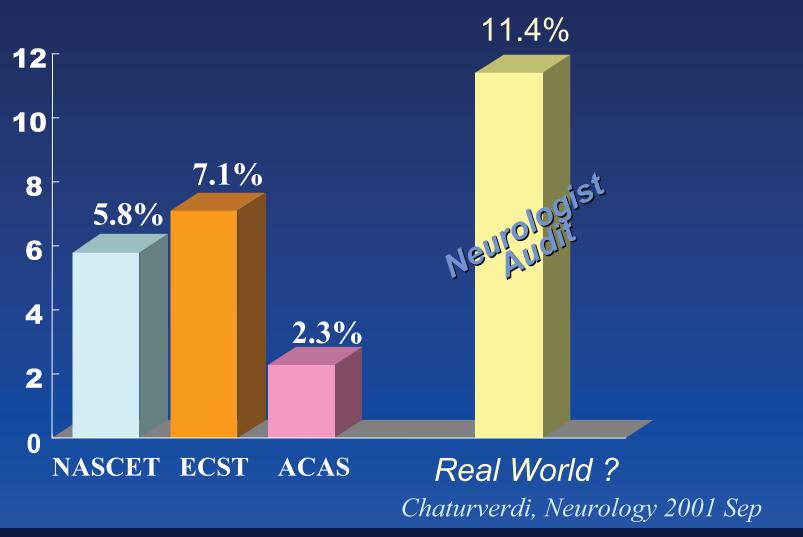

- Asymptomatic 80% carotid stenosis
 - 6% risk of stroke / year
- Symptomatic carotid stenosis have
 10% risk of CVA at one year and
 40% at 5 years

Why should we open?


Carotid end-arterectomy Vs. **Medical therapy**

CEA vs. Medical **Symptomatic Patients**

CEA vs. Medical **Asymptomatic Stenotic Patients**



Limitations of CEA

- Average risk of perioperative stroke for low risk patient is ~6%
- Anatomic considerations
- Cranial nerve palsies (7~27%)
- Restenosis ~15%
- > 50% have severe coronary artery disease

Death or Stroke after CEA

Carotid Stenting

Carotid Stenting

Potential Benefits

- Reduced complication rates
- Less invasive
- Can reach essentially all blockages
- Very low restenosis rate
- Rapid return to daily life

Current Contraindication of Carotid Stenting

- Severely tortuous, calcified and atheromatous aortic arch vessels
- Pedunculated thrombus at the lesion site
- Severe renal impairment
- Recent stroke (3 weeks) ;should be placed on anticoagulants and antiplatelets for 1 month
- Unable to tolerate antiplatelet agents

Carotid Stenting Without Protection

Success & Complications Rates

Carotid Stenting

Study	Setting	N	Success	Stroke & TIA*	Death
Roubin (1996)	High risk	146	99%	6.2%	0.7%
Shawl (2000)	High risk	170	99%	2.9%	0%
Wholey (2000)	registry	5129	98.4%	4.2%	0.8%
Roubin (2001)	High risk	428	99%	4.6%	0.2%

* *Major stroke* < 1%

Complications Rates in Multicenter

Carotid Stenting

N=4757 pts, 36 major carotid centers, 1988-1997

TIAs	2.82 %

6-mo ISR =
$$1.99\%$$

12-mo ISR =
$$3.46\%$$

Wholey MH, et al. CCI 2000;50:160-7

Carotid Stenting With Protection

Embolization during CAS

	Cerebral Protection	
	No (n=102)	Yes (n=142)
TCD-HITS	100%	100%
DW-MRI	29%	7.1%
TIA	8%	2.7%
Stroke	3%	1.3%
TIA + Stroke	11%	4%

K. Mathias et al, AJNR 2001

^{*} Protection devices: Angioguard, PercuSurge & EPI

Cerebral Embolization

High Risk Lesions

- Unstable plaque
 break down of fibrous cap
- Soft plaque
- Long stenosis string sign contains thrombus

Embolic Complications of Stenting

Periprocedural

- Angiography ——— Rare
- Access Rare
- Wire Crossing → Rare if coronary wire
- Balloon Dilatation → Rare
- Stent Placement ——— Potential and unpredictable
- Post Dilatation
 Potential and unpredictable
- Postprocedural ------ Rare

Protection of Distal Embolization

- Use cerebral protection device
- No pre-dilatation with a peripheral balloon
- No oversizing of balloon
- Never use high pressures
- Never try to dilate the stent to obliterate contrast filled ulcerated area external to the stent

Distal Protection Devices

Distal occlusion

Theron balloon PercuSurge Guardwire

• Filter

MedNova NeuroShield

EPI filter

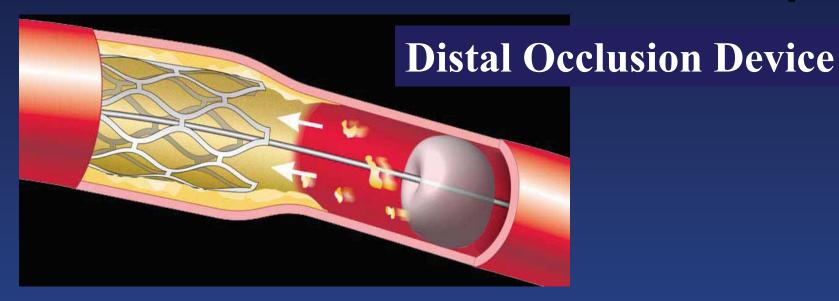
Angioguard filter

Medtronic filter

BSC Captura

Bate's Floating Filter

Accu-Filter

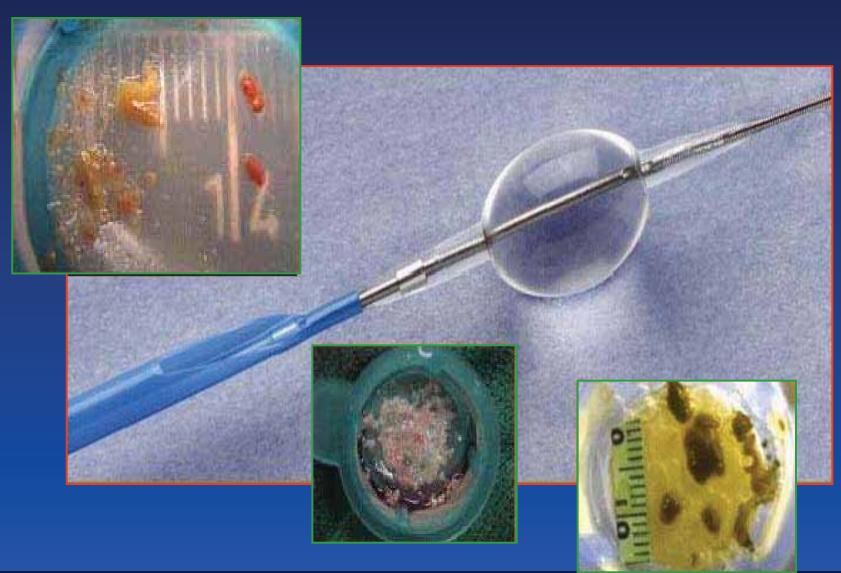

E-Trap


Microvena Trap

Proximal occlusion

Kachel balloon ArteriA Parodi Catheter

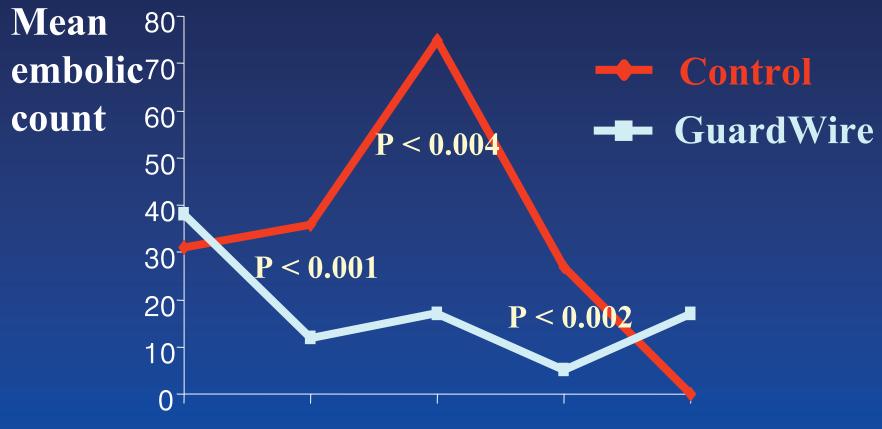
Distal Protection Devices - Concepts



The Ideal Protection System

- Does not cause harm
 - Complete protection
 - Capture efficiency
- Protection at all time for all particles
- Wide applicability
- User friendly

PercuSurge GUARDWIRETM



PercuSurge GUARDWIRETM

GuardWire™	PERCUSURGE, Inc
System	0.014
Crossing Profile	0.036"(3-6mm),
Crossing Profile	0.028"(2-5mm)

The Export® Aspiration Catheter	PERCUSURGE, Inc
Total Length	137 cm
RX shaft design	3.5 x 4.5F distal OD
Aspiration system	20cc locking syringe

PercuSurge GUARDWIRETM

Sheath/wire Predilation stent postdilation

Al-Mubarak et al, Circulation, 2001

Protection with Percusurge GuardWire system

- 242 patients with PercuSurge (179, 74% high risk)
- 99.3% Technical Success
- Overall mean balloon protection time = 410 ± 220 sec
- 30 days outcome (2.3%)

-3	TIA.	1 1	retinal	embolism	1.5	0/0	(4)
		T 1	t O tillimi		1.0	/ U ((

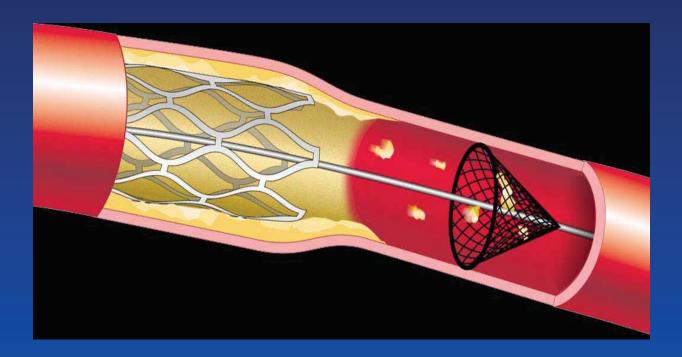
• 36-month event-free survival (stroke, death) : 97% 4 death(2 AMI, 1 contralateral stroke, 1 cancer)

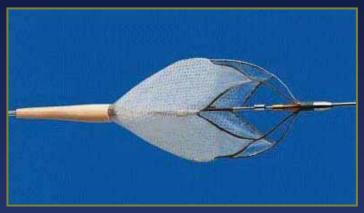
Catheter Cardiovasc interv 2004;61:293-305

Distal Occlusion balloon

Strength

- Mimics standard guidewire more than any filters
- Ability to cross lesion
- Particles of all sizes can be blocked (ICA)

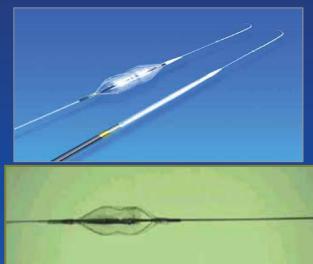

Distal Occlusion balloon


Weakness

- Unprotected
 - 1) During passage,
 - 2) ECA
 - 3) Incomplete suction
- Does not preserve ICA flow (can't be angiogram)
- May cause spasm/dissection in distal ICA
- Cumbersome procedure (cannot move wire during exchange, several added steps, aspiration)

Distal Protection Devices

Filter



Guidant - ACCUNET

BSC - EPI

MedNova - Emboshield

MedNova – Gen III

Filter Device

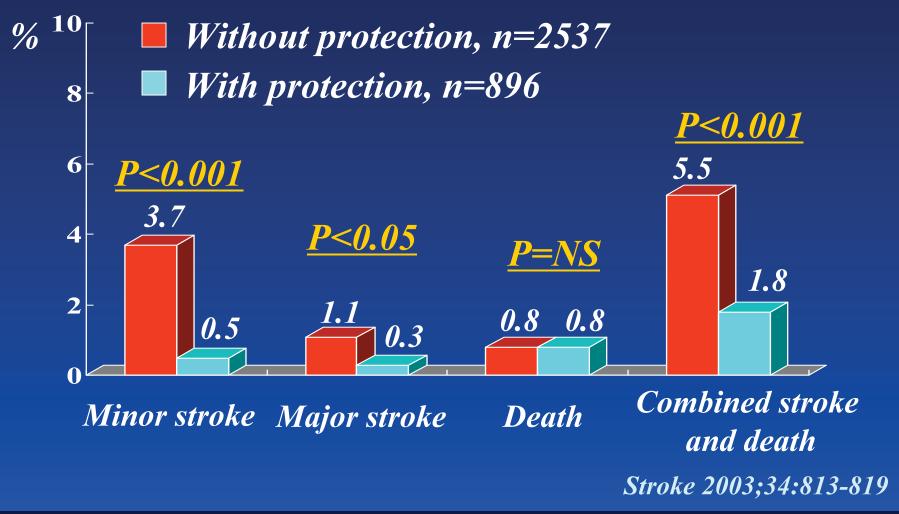
Strength

- Intuitive
- Preserves ICA flow

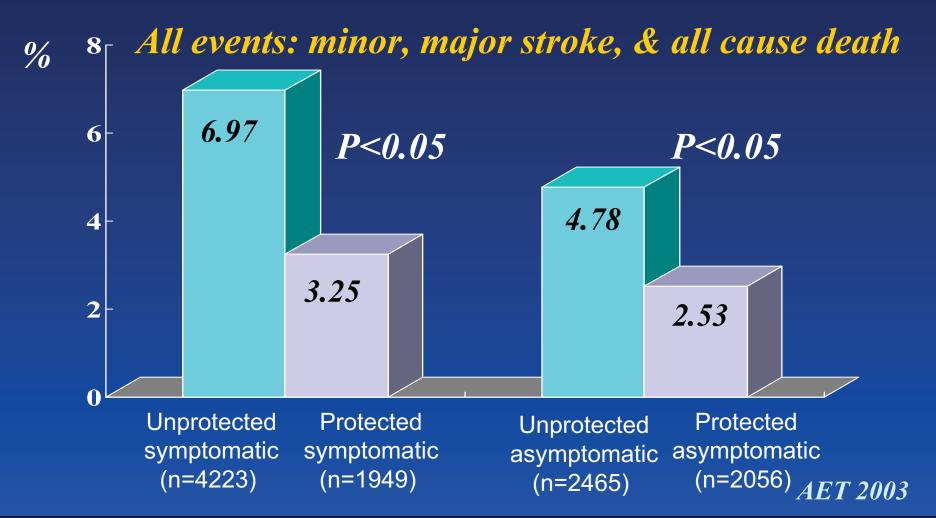
Filter Device

Weakness

- Not same as standard guidewire
- Larger profile, less flexible
- Frequent need to predilate (recross PTA site)
- Unprotected
 - 1) during passage
 - 2) small particles
 - 3) flow around filter
 - 4) during filter retrieval
- May thrombose
- May cause spasm/dissection in distal ICA
- Cumbersome procedure (cannot move wire during exchange, several added steps)


Periprocedural Outcomes with **Protection Device**

AET 2003

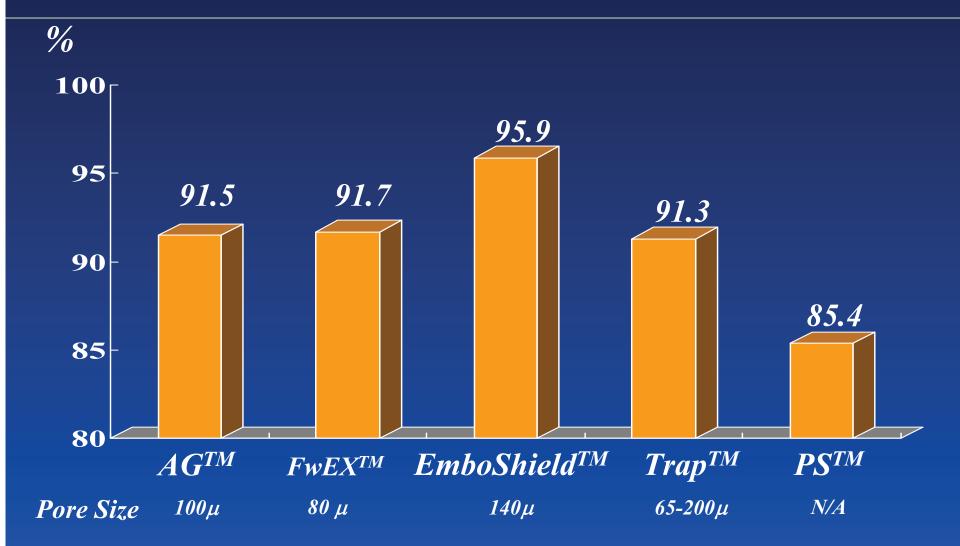


30-Day Outcomes with Protection Device

Periprocedural Outcomes

Symptomatic & Asymptomatic

Predictors of stroke Multivariate analysis


30 days outcomes		P value
Minor stroke	Protection(-)	0.0182
	Hypertension	0.0216
Major stroke	Protection(-)	0.0892
	Age>80 yrs	<0.0001
Fatal stroke	Protection(-)	0.0892
	Prior TIA	0.0320
All stroke	Protection(-)	0.0009
	Hypertension	0.0102
	Age>80 yrs	0.0081
	Prior CEA	0.0822

AET 2003

Comparison of **Devices Efficiency**

Capture Efficiency of **Protection Devices**

JVIR 2003;14:613-620

CAS with protection Complication at 30 days

				750
	Al-Mubarak	Tubler,	ARCHeR	SAPPHIRE
	2002	2001	(Acculink,	(Angioguard,
	(Neuroshield)	(Percusurge)	Accunet)	Precise)
Patients	N=162	N=58	N=437	N=408
Death	1.0%	0%	2.3%	2.5%
Stroke	1.0%	4%	5.3%	5.6%
Major	0%	2.0%	1.6%	3.1%
Minor	1.0%	2.0%	3.7%	2.7%
MI	0.5%	0%	2.1%	1.7%
Total MAE	2.0%	4%	7.8%	7.8%

AET 2003

Comparisons Between Filter Devices 30 days Outcomes

Major Endpoints	N=56 Angioguard filter	N=55 Neuroshield filter
Minor stroke	1(1.78%)	0
Major stroke	0	1(1.8%)
MI	0	0
death	0	0

No difference!!!

AET 2003

Endarterectomy Vs. Stenting

CAVATAS

Multicenter Randomized Trial: CEA vs. Angioplasty

	Angioplasty N=251	CEA N=253
30-day death & stroke	6.4%	5.9 %
Cranial neuropathy	0 %	8.7 %
1-year restenosis *	14 %	4 %

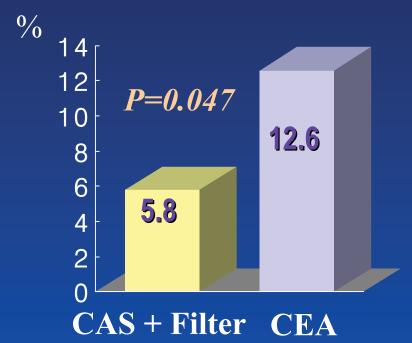
* Stenting = only in 26%

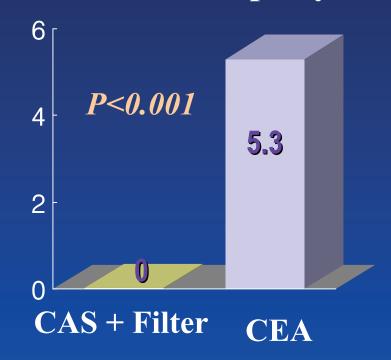
Lancet 2001;357:1729-37

The SAPPHIRE Study

Senting with filter device

vs. Endarterectomy


in high risk patients


30-Day Events

SAPPHIRE

Death/MI/Stroke

Cranial n. palsy

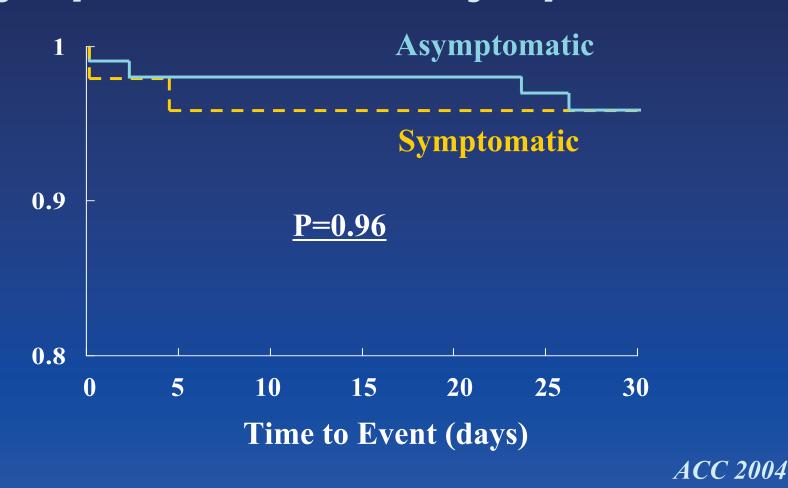
Patient selection of carotid stenting

Only high surgical risk patients
Vs.

All patients

High Risk Surgical Criteria

Should be the stenting!


Anatomic high risk

- High(C2) carotid bifurcation
- Prior neck irradiation or radical neck dissection
- Restenosis following prior CEA
- Contralateral occlusion
- Ostial common carotid lesion
- Spine immobility

Surgical high risk

- Severe CAD
 - Not revascularized or awaiting CABG
- Class III or IV CHF
- Severe COPD
- \bullet Age > 80

30 days Outcomes of CAS with protection Symptomatic vs. Asymptomatic

30 days outcomes of CAS with protection High vs. low risk

	High risk	Low risk	p
	N=326	N=262	
Minor stroke	4(1.2%)	3(1.1%)	ns
Major stroke	1(0.3%)	1(0.4%)	ns
Fatal stroke	2(0.6%)	0	ns
All stroke	7(2.1%)	4(1.5%)	ns
All death	4(1.2%)	1(0.4%)	ns
Death+Stroke	9(2.8%)	5(1.9%)	ns

High risk: age > 80, prior ipsilateral CEA, prior neck surgery or radiation, contralateral occlusion, anatomic low or high lesion, unstable/severe heart disease

ACC 2004

Now. Carotid Stenting

- With the use of the protection device, carotid stenting may be a more preferred therapy to carotid endarterectomy in carotid stenosis.
- The efficacy of carotid stenting may be extended to all patients subsets, such as symptomatic, asymptomatic, high risk, and low risk subgroups.