

Non-invasive Plaque Imaging using Multi-slice Spiral Computed Tomography

Stephen Schröder, MD

Associate Professor of Internal Medicine/Cardiology Interdisciplinary Section "Cardiovascular Imaging" Departments of Cardiology and Radiology Eberhard-Karls-University Tübingen, Germany

Coronary imaging using MSCT EBERHARD KARLS -Improvements of technology-

	10 101 101 101 101 101 101 101 101 101		1999	2002	2003	2004
	Konv. Angio	EBCT	MSCT (4-slices)	MSCT (12-slices)	MSCT (16-slices)	MSCT (64-slices)
Temporal resolution (ms)	20	100	Down to 125	Down to 105	Down to 92	< 92
In-plane Res. lp/cm	50	5	8.6	10	10	> 10
Z-Achse Res. lp/cm	-	2	7	9	9	>10
Eff. SW (mm)	-	3	1.25	0.8	0.8	<0.8

Coronary imaging using MSCT -Comprehensive view on anatomy-

~200 axial images

Submillimeter resolution

Plaque imaging using MSCT -Calcium scoring-

Correlation r=0.985 for EBCT/MSCT (Agatston-Score)

C.R. Becker et al. AJR 2001; 176:1295-1298

	EBCT	MSCT	MSCT	MSCT			
	Prosp. Trigg (3 mm)	Prosp. Trigg (4x2.5 mm)	Retrosp. Gating (4x2.5 mm)	g Retrosp. Gating (4x1.0mm)			
Agatston Score							
MV	35.5	20.8	21.8	28.0			
SD	3.3	5.8	6.1	1.6			
Var.Coeff (%)	9.3 27.9		28.3	<i>5.9</i>			
Calcium-Mass							
MV (mg ³)	6.3	3.9	4.2	4.9			
SD (mg ³)	0.3	0.9	1.0	0.2			
Var.Coeff (%)	5.3	22.2	23.9	4.1			

Ulzheimer et al, Eur. Radiology 2003;13:484-497

Plaque imaging using MSCT -Calcium scoring-

Investigator	Number	Age	FU (years)	Gender (% male)	Risk Ratio
Georgiou	192	53	4.2	54	13.1
Detrano	491	57	2,5	64	10.8
Keelan	288	56	6.9	77	3.2
Arad	1173	53	3.6	71	20.2
Agatston	367	52	6.0	68	<i>16.9</i>
Detrano	1196	66	3.4	89	2.3
Park	967	67	6.4	91	<i>4.9</i>
Raggi	632	52	2.7	51	15.4
Wong	926	54	3.3	79	8.8
Arad	5585	59	4.3	70	10.7
Kondos	5635	51	3.1	74	10.5/2.6

Budoff et al, JACC 2003;42:1867-1878

Non-invasive MSCT imaging -Plaque imaging: Risk stratification?-

Qualifiers:

Note that total CVD risk may be higher than indicated in the chart:

ane person approaches the next age category

- in asymptomatic subjects with pre-clinical evidence of atherosclerosis (e.g. CT scan, ultrasonography)
- In a blocks with a strong family bistory of ture CVD
- In subjects with low HDL cholesterol levels, with raised trigly ceride levels, with impaired glucose tolerance, and with raised levels of C-reactive protein, fibrinogen, homocysteine, apolipoprotein B or Lp(a)
- in obese and sedentary subjects

European Task Force on CHD Prevention

Eur Heart J 2003;24:1601-1610

Plaque imaging using MSCT -Non-calcified plaques-

Different stages of atherosclerosis or artifacts?

Plaque imaging using MSCT -Reference-Standard: Histology-

- **I** Isolated Macrophages
- **II** Foam Cell Layers
- **III** Extracellular Lipid Pools
- **IV-** Extracellular Lipid Core
- **V-** Fibromuscular layers formed
- **VI** Intravascular Thrombi
- **VII** Calcification predominates

VIII- Fibrous tissue predominates

HC Stary, Arterioscl Thromb Vasc Biol 2000; 20:1177-1178

Plaque imaging using MSCT -Non-calcified-plaques: EX-vivo results-

Schröder et al. 2004; under submission

Plaque imaging using MSCT -Non-calcified-plaques: EX-vivo results-

3۱

A: H&E-stained cross section of a Stary V atherosclerotic plaque

B: Scheme demonstrating the parts of the lesion in figure A *C:* Contrast-enhanced MSCT -image of the atherosclerotic lesion shown in figure A

1 Min/Max: 24 /59

1 Mean/SD: 34.2/10.8

Schröder et al. 2004; under submission

Plaque imaging using MSCT -Non-calcified-plaques: In-vivo results-

Schröder, Kopp et al. JACC 2001;37:1430-5

Plaque imaging using MSCT -Non-calcified-plaques: In-vivo results-

Schröder, Kopp et al. JACC 2001;37:1430-5

Leber et al. JACC 2004;43:1241-1247

Plaque imaging using MSCT -Non-calcified-plaques: In-vivo results-

N=37 pts, 68 vessels, Sensation 16, 12* 0.75 mm, 120 kV, 450 mAS, 100 ml CM

	Soft	Fibrous	Calcified	Total
	Sensitivity	Sensitivity	Sensitivity	Specificity
RCA	12/16	27/34	49/49	94/102
	75%	79%	100%	92%
LAD	44/54	47/62	76/83	294/315
	81%	76%	92%	93%
LCX	6/10	13/16	25/26	96/108
	60%	82%	96%	89%
Total	62/80	87/112	150/158	484/525
	78%	78%	95%	92%

Leber et al. JACC 2004;43:1241-1247

Plaque imaging using MSCT -Non-calcified-plaques: In-vivo results-

- N=22 pts, 22 vessels
- Segmental detection + evaluation of plaque volume
- *IVUS-* N=83 sgts- 50 sgts with plaques [31 cp & ncp, 4: cp, 15: ncp)
- MSCT (Sensation 16)-41 sgts with plaques (Sensitivity: 82/92%, Specificity: 86/88%)

Achenbach et al. Circulation2004;109:14-17

IVUS-characteristics of plaques missed by MSCT (n=9 sgts) Volume 47±11 mm³, area 8±3 mm² (vs 76±10 mm³, area 11±4 mm²)

Achenbach et al. Circulation2004;109:14-17

Prerequisite for accurate detection of non-calcified plaques > Larger vessel (>2 mm) Sufficient plaque thickness (>~0.9 mm) Sufficient plaque volume

Leber et al. JACC 2004;43:1241-1247

Achenbach et al. Circulation2004;109:14-17

Plaque imaging using MSCT -Clinical significance?-

Schröder, Küttner, Kopp et al. Int J Cardiol 2003; 92:151-155

n = 40 pat, age: 64 ± 8 years, "matched" for CVRF

СР		AMI n= 21	SAP n=19	p-value
	NCP	2.4	0.74	< 0.001
NCP	СР	3.2	7.1	< 0.05
	CS	322	631	< 0.05
A REPORT OF THE OWNER OWNER OF THE OWNER OWN	ТРВ	9.7	12.1	n.s.

Leber et al, Am J Cardiol 2003; 91:714-718

Plaque imaging using MSCT -Current limitations-

Dose measurement using an Alderson-Rando-Phantom (thermoluminescence dosimetry)

	[1]	[2]	[3]	[4]
N/		نتو شو	<i></i>	<i>i</i> = 1
Protocol	Casc	CaSc	CIA	CIA
ECG-pulsing [+/–]	-	+	-	+
scan range (mm)	120	120	100	100
U [kV]	120	120	120	120
l _{eff} [mAs]	133	133	400	400
gantry rotation time [s]	0,42	0,42	0,42	0,42
collimation (mm)	12×1,5	12×1,5	12×0,75	12 × 0,75
table feed (mm)	5,7	5,7	2,8	2,8
pitch-factor	0,32	0,32	0,31	0,31
CTDI _w	10,45	10,18	37,56	37,56
Total mAs	1287	794	5322	2947
DLP	164	160	451	451

Trabold, Schröder et al, Fortschr Röntgenstr 2003; 175: 1051-1055

Plaque imaging using MSCT -Current limitations-

Dose measurement using an Alderson-Rando-Phantom (thermoluminescence dosimetry)

	protocol	effective dose male [mSv]	effective dose female [mSv]
[1]	CaSc	2,9	3,6
[2]	CaSc + ECG-pulsing	1,6	2,0
ղ [3]	CTA	8,1	10,9
[/] [4]	CTA + ECG-pulsing	4,3	5,6

Trabold, Schröder et al, Fortschr Röntgenstr 2003; 175: 1051-1055

Plaque imaging using MSCT -Summary-

Detection of (early) atherosclerosis

- Calcified as well as non-calcified plaques can be detected by the use of MSCT with good diagnostic accuracy
- MSCT can provide information on morphology, not on biology
- Combination with other imaging modalities useful?
- > Specific contrast media useful?
- Clinical relevance of MSCT "plaque-imaging" is currently unclear and subject of ongoing studies

Interdisciplinary Section "Cardiovascular Imaging"

PD Dr. Schröder Dr. Beck Dr. Burgstahler Dr. Franow Dr. Helber PD Dr Herdeg Dr. Pflumm

DI. Kopp PD Dr. Miller Dr. Fenchel Dr. Heuschmid Dr. Kramer Dr. Küttner Dr. Stauder

Stephen.Schroeder@med.uni-tuebingen.de