An Update on ABT-578 - PC Coated Stent Studies

Abbott Prefer-IVUS
Medtronic Endeavor 1

Ian T. Meredith
MBBS, PhD FRACP, FACC
Monash Medical Centre and Monash University,
Melbourne, Australia
Strategic Alliance

Medtronic

- Load Abbott stent on Medtronic delivery system
- ABT-578 and PC coating on Medtronic AVE stents
- Provide OTW, RX Int’l & new stent delivery system to Abbott

Abbott Laboratories

- License ABT-578 and PC coating to Medtronic Vascular
- Load Abbott stent on Medtronic delivery system
ABT-578 Chemical Structure

ABT-578

Sirolimus

Everolimus
ABT-578 Mechanism of Action

- **Primary mode of action is anti-proliferative:** by inhibiting the function of the cell cycle regulatory protein, mTOR.

- **Inflammatory response may be limited by blocking local cytokines.**

ABT-578 Mechanism

- **Complex prevents …**
 - Rb phosphorylation
 - p70S6 kinase
 - cyclin-dependent kinase (CDK) activation
 - p27 down regulation

- **ABT-578 binds with FKBP₁₂ protein**

- **Complex blocks mTOR signal transduction**
The PC coating is a synthetic copy of the predominant phospholipid of red blood cell membranes.
ABT-578 In vivo Drug Elution Data

% Drug Eluted

% Total Drug Load in Tissue Surrounding Stent

Endeavor Preclinical Study Rabbit Iliac Artery
10μg/mm ABT-578 PC-coated Driver Stent

A. Carter, ACC 2003
PREFER – IVUS
FIM Trial of an ABT-578 eluting stent.
N=50 patients with *de novo* or restenotic Coronary Lesions

11 Subjects Studied

Aspirin 300mg & clopidogrel (300mg loading), then 75mg daily for 3 months

Lesion diam. 3.0mm Length ≤ 15mm

3 mths IVUS & Angio Clinical FU 6,12 mths Yearly clinical for 5 yrs
PREFER – IVUS Objectives

Primary Objective
- Demonstrate the safety and efficacy of the ABT-578 coated BiodivYsio™ stent

Primary end point
- MACE at 30 days

Secondary Objectives
- Evaluate clinical, angiographic, IVUS and device performance

Secondary Endpoints
- In hospital MACE rate, 6 month MACE rate, TVR rate at 6 mths, 1 year and yearly for 5 years.

Additional Evaluations
- Device, lesion and procedural success
PREFER – IVUS

Investigators
Ian Meredith, Melbourne, Australia 4pts
Robert Whitbourn, Melbourne, Australia 4pts
John Ormiston, Auckland, New Zealand 3pts

Analysis
QCA: Brigham and Womens , Boston USA
IVUS: Stanford Interventional Cardiology, California
ECG: Harvard Clinical Research Institute, Boston
PREFER-IVUS

90 day QCA Peri-stent Analysis

<table>
<thead>
<tr>
<th></th>
<th>Late Loss (mm)</th>
<th>Binary Restenosis (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-stent</td>
<td>0.2</td>
<td>0</td>
</tr>
<tr>
<td>Proximal margin</td>
<td>0.2</td>
<td>0</td>
</tr>
<tr>
<td>Distal margin</td>
<td>0.0</td>
<td>0</td>
</tr>
<tr>
<td>In-segment</td>
<td>0.1</td>
<td>0</td>
</tr>
</tbody>
</table>

![Diagram showing late loss and binary restenosis metrics for different segments.](attachment:image.png)
PREFER- IVUS
Post PCI & 90 day IVUS Analysis

Lumen & Neointima Volume
(n=10)

- Post: 148.5 mm³
- 3M-FU: 139.4 mm³

Average Lumen & Neointima Area

- Lumen: 7.25 mm²
- Neointima: 0.18 mm²

Volume index: Volume/Stent Length
Drug eluting stent trials
Comparison of % Neointimal Volume

<table>
<thead>
<tr>
<th>Drug Family</th>
<th>BMS</th>
<th>ASPECT</th>
<th>SCORE</th>
<th>TAXUS SR</th>
<th>TAXUS MR</th>
<th>SIRIUS</th>
<th>FUTURE</th>
<th>RAVEL</th>
<th>PREFER</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Taxol"</td>
<td>30.0</td>
<td>11.8</td>
<td>9.2</td>
<td>7.9</td>
<td>7.8</td>
<td>2.9</td>
<td>2.6</td>
<td>1.0</td>
<td>2.6</td>
</tr>
<tr>
<td>"Limus"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Courtesy of Peter Fitzgerald
PREFER - IVUS Summary

- No safety concerns associated with the PC coated ABT-578 drug-eluting stent
- Negligible neointimal response both in stent and in segment.
- Zero binary restenosis rate
- No acquired malappositions, aneurysms stent thromboses
Primary Endpoints: MACE at 30 days and late loss (QCA) at 4 mo
Secondary Endpoints: TVF and TLR at 9 months; late loss at 12 mo
IVUS at 4 and 12 months
Stent Sizes: 3.0-3.5 mm x 18 mm
Pre- and post-dilatation specified with balloon length < stent length
Antiplatelet therapy for 3 months
Endeavor DES System
Key Components

- Driver Cobalt Alloy Stent
- Stent Delivery System
- PC Technology
- Drug: ABT-578

Angioplasty Summit Korea 2004 ITM
E1 PI & Core Labs

Principal Investigator
Ian T. Meredith, Monash Medical Centre, Melbourne, Aust

QCA Core Lab
Brigham and Women’s Hospital, Boston, MA, USA
Jeffrey J. Popma, MD

IVUS Core Lab
Cardiovascular Core Analysis Lab
Stanford Interventional Cardiology, CA, USA
Peter Fitzgerald, MD

Data Coordinating Center
Harvard Clinical Research Institute
Richard E. Kuntz, MD, MSc and Ross Prpic, MBBS

ECG Core Lab
Harvard Clinical Research Institute, Boston, MA, USA
Peter Zimetbaum, MD

Clinical Events Committee/DSMB
Harvard Clinical Research Institute, Boston, MA, USA
Donald Cutlip, MD
<table>
<thead>
<tr>
<th>Investigator</th>
<th>Hospital</th>
<th># Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>John Ormiston</td>
<td>Green Lane/Mercy, NZ</td>
<td>32</td>
</tr>
<tr>
<td>Robert Whitbourn</td>
<td>St. Vincent’s, Melbourne</td>
<td>20</td>
</tr>
<tr>
<td>Patrick Kay</td>
<td>Dunedin, NZ</td>
<td>16</td>
</tr>
<tr>
<td>Ian Meredith</td>
<td>Monash Medical Centre</td>
<td>14</td>
</tr>
<tr>
<td>David Muller</td>
<td>St. Vincent’s, Sydney</td>
<td>12</td>
</tr>
<tr>
<td>Mark Adams</td>
<td>Royal Prince Alfred Hosp.</td>
<td>3</td>
</tr>
<tr>
<td>Con Aroney</td>
<td>The Prince Charles Hosp.</td>
<td>2</td>
</tr>
<tr>
<td>Mark Pitney</td>
<td>Eastern Heart Clinic</td>
<td>1</td>
</tr>
</tbody>
</table>
E I Milestones

<table>
<thead>
<tr>
<th>Milestone</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Ethics Approval</td>
<td>December, 2002</td>
</tr>
<tr>
<td>TGA Approval</td>
<td>December, 2002</td>
</tr>
<tr>
<td>First Patient Enrolled</td>
<td>January, 2003</td>
</tr>
<tr>
<td>Last Patient Enrolled</td>
<td>April, 2003</td>
</tr>
<tr>
<td>Last 4 mo Follow up</td>
<td>August, 2003</td>
</tr>
<tr>
<td>Database Lock</td>
<td>September, 2003</td>
</tr>
<tr>
<td>4 mo Data TCT Presentation</td>
<td>September, 2003</td>
</tr>
<tr>
<td>Last 12 mo Follow up</td>
<td>29<sup>th</sup> April, 2004</td>
</tr>
<tr>
<td>12 mo Clinical Data PCR</td>
<td>25<sup>th</sup> May, 2004</td>
</tr>
<tr>
<td>12 mo Angio/ IVUS Data PCR</td>
<td>25<sup>th</sup> May, 2004</td>
</tr>
</tbody>
</table>
Endeavor I
Patient Demographics

<table>
<thead>
<tr>
<th>n=100</th>
<th>Baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>79.0%</td>
</tr>
<tr>
<td>Average age (years)</td>
<td>58.8 (35-76)</td>
</tr>
<tr>
<td>Prior MI</td>
<td>47.0%</td>
</tr>
<tr>
<td>Prior PCI</td>
<td>19.0%</td>
</tr>
<tr>
<td>Diabetes Mellitus</td>
<td>16.0%</td>
</tr>
<tr>
<td>Unstable Angina</td>
<td>39.0%</td>
</tr>
<tr>
<td>Hyperlipidemia</td>
<td>91.8%</td>
</tr>
<tr>
<td>Current Smoker</td>
<td>34.0%</td>
</tr>
</tbody>
</table>
Endeavor I
30 day & 4mth Hierarchical MACE

<table>
<thead>
<tr>
<th>n=100</th>
<th>30 Days</th>
<th>4 Months</th>
</tr>
</thead>
<tbody>
<tr>
<td>MACE</td>
<td>1%</td>
<td>2%</td>
</tr>
<tr>
<td>Death</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MI (all)</td>
<td>1%</td>
<td>1%</td>
</tr>
<tr>
<td>Q-wave</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Non Q-wave</td>
<td>1%</td>
<td>1%</td>
</tr>
<tr>
<td>TLR</td>
<td>0</td>
<td>1%</td>
</tr>
<tr>
<td>TVR (non-TL)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Acute device, lesion and procedural success: 100%
4 mth clinical follow up achieved: 100%
<table>
<thead>
<tr>
<th></th>
<th>In-Stent</th>
<th>In-Segment</th>
</tr>
</thead>
<tbody>
<tr>
<td>RVD, mm</td>
<td>2.96 ± 0.47</td>
<td></td>
</tr>
<tr>
<td>Lesion Length, mm</td>
<td>10.9 ± 3.1</td>
<td></td>
</tr>
<tr>
<td>MLD Pre, mm</td>
<td>0.88 ± 0.33</td>
<td></td>
</tr>
<tr>
<td>Post, mm</td>
<td>2.84 ± 0.35</td>
<td>2.52 ± 0.42</td>
</tr>
<tr>
<td>4 m follow-up</td>
<td>2.52 ± 0.43</td>
<td>2.31 ± 0.44</td>
</tr>
<tr>
<td>Acute Gain, mm</td>
<td>1.96 ± 0.38</td>
<td>1.64 ± 0.42</td>
</tr>
<tr>
<td>Late Loss, mm</td>
<td>0.33 ± 0.35</td>
<td>0.20 ± 0.40</td>
</tr>
<tr>
<td>Late Loss Index</td>
<td>0.17</td>
<td>0.11</td>
</tr>
</tbody>
</table>

4 mth angio follow up achieved: 99%
E1 4 mth QCA

% DS

In-Stent

In-Segment

% Diam. Stenosis

Pre Post 4 F/U

70.3% 5.4% 14.4% 0%

70.3% 16.5% 21.7% 0%
E1 4 mth QCA Edge Data

Prox. 5 mm | Distal 5 mm

Proximal In-Stent Distal In-Segment

Late Loss

-0.40 -0.20 0.00 0.20 0.40 0.60 0.80

0% 2.1% 0% 2.1%

0.11 0.33 0.09 0.20
E1
Pt # 006

Pre PCI

Post

4mth

12mth
E1 4mth IVUS Data

<table>
<thead>
<tr>
<th></th>
<th>Post Mean</th>
<th>Follow up Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEM volume</td>
<td>300 mm³</td>
<td>321 mm³</td>
</tr>
<tr>
<td>Stent Volume</td>
<td>142 mm³</td>
<td>149 mm³</td>
</tr>
<tr>
<td>Neointimal Volume</td>
<td>NA</td>
<td>6.1 mm³</td>
</tr>
<tr>
<td>Lumen Volume</td>
<td>142 mm³</td>
<td>143 mm³</td>
</tr>
<tr>
<td>Percent Volume</td>
<td>NA</td>
<td>4.5%</td>
</tr>
<tr>
<td>Obstruction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Late Acquired</td>
<td>—</td>
<td>0</td>
</tr>
<tr>
<td>Incomplete Apposition</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4 mth IVUS follow up achieved: 98%
Baseline (post stenting)

Four Month Follow-up

(233_012)
E1 4 & 12 mth IVUS F/U

Pt # 0012 RCA

Post Stent

4 mth follow up

12 mth follow up
E1 4 & 12 mth IVUS F/U

Post Stent

4 mth follow up

12 mth follow up
Endeavor II

Randomized, Double-blind Trial
Single De Novo Native Coronary Artery Lesions (Type A-C)
Vessel diam: 2.25-3.5 mm, Lesion Length: 14-27 mm
N = 1200

Control Driver Stent
n=600

Endeavor Stent
n=600

90 site Europe, Canada, Israel, South-East Asia, Australia, and New Zealand

Clinical/MACE

Angio/IVUS

Primary Endpoint: TVF (cardiac death, MI, TVR) at 9 months
Stent Sizes: 2.25-3.5 mm x 18-30 mm (8/9 mm bailout)
Pre dilatation specified, Antiplatelet therapy for 3 mo, PK sub-study
E II Study Design

Randomized Population
n = 1200

Uncoated Control
Driver Stent
n = 600

ABT-578 Eluting
Driver Stent
n = 600

First 300 pts
All Sites

QCA
n = 300

No QCA
n = 300

First 150 pts
At IVUS Sites

IVUS
n = 150

No IVUS
n = 150

No IVUS
n = 150

QCA
n = 300

No IVUS
n = 150

No QCA
n = 300

No IVUS
n = 150
Endeavor II

Primary objective
To demonstrate the safety & efficacy of the Endeavor™ Coronary Stent (10 μg/mm ABT-578) compared to the uncoated DRIVER™ Stent for the treatment of single de novo lesions in native coronary arteries (2.25-3.5 mm diam).

Primary End-Point
Target Vessel Failure (TVF) rate, defined as a composite of target vessel revascularization, recurrent MI (Q or Non Q-Wave), or cardiac death that could not be clearly attributed to a vessel other than the target vessel at 9 months post procedure.
Endeavor II: Inclusion Criteria

Age ≥ 18 years

Evidence of ischemic heart disease or a +ve functional study

Acceptable for PTCA, stenting and CABG

SVD or MVD with only moderate stenosis

Target lesion/ vessel

Single de novo, native lesion $\geq 50\%$ and $< 100\%$

Lesion length: ≥ 14 mm and ≤ 27 mm

Reference diameter: ≥ 2.25 mm and ≤ 3.5 mm

-ve pregnancy test before the procedure if applic

Subject has provided written informed consent
<table>
<thead>
<tr>
<th>Country</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>3</td>
</tr>
<tr>
<td>Austria</td>
<td>2</td>
</tr>
<tr>
<td>Belgium</td>
<td>6</td>
</tr>
<tr>
<td>Denmark</td>
<td>2</td>
</tr>
<tr>
<td>France</td>
<td>11</td>
</tr>
<tr>
<td>Germany</td>
<td>15</td>
</tr>
<tr>
<td>Greece</td>
<td>1</td>
</tr>
<tr>
<td>Hong Kong</td>
<td>2</td>
</tr>
<tr>
<td>Israel</td>
<td>5</td>
</tr>
<tr>
<td>New Zealand</td>
<td>2</td>
</tr>
<tr>
<td>Poland</td>
<td>4</td>
</tr>
<tr>
<td>Portugal</td>
<td>1</td>
</tr>
<tr>
<td>Singapore</td>
<td>2</td>
</tr>
<tr>
<td>Switzerland</td>
<td>3</td>
</tr>
<tr>
<td>Netherlands</td>
<td>5</td>
</tr>
<tr>
<td>UK</td>
<td>6</td>
</tr>
<tr>
<td>Investigator</td>
<td>Country</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>G Laarman</td>
<td>Netherlands</td>
</tr>
<tr>
<td>K-H Kuck</td>
<td>Germany</td>
</tr>
<tr>
<td>T Münzel</td>
<td>Germany</td>
</tr>
<tr>
<td>E Hauptmann</td>
<td>Germany</td>
</tr>
<tr>
<td>M Suttrop</td>
<td>Netherlands</td>
</tr>
<tr>
<td>J Drzewiecki</td>
<td>Poland</td>
</tr>
<tr>
<td>J Ormiston</td>
<td>New Zealand</td>
</tr>
<tr>
<td>H-P Schultheiss</td>
<td>Germany</td>
</tr>
<tr>
<td>M Pieper</td>
<td>Switzerland</td>
</tr>
</tbody>
</table>
ENDEAVOR III
Randomized Multi-center Trial

N=436
3:1 Randomization

Single De Novo Native Coronary Artery (NCA) Lesion (Type A-B)
Stent Diameter: 2.5-3.5 mm
Stent Lengths: 18-30 mm (8/9 mm bailout)
Lesion Length: 14 - 24 mm
Pre-dilatation required
Direct Stenting is not allowed

Control Cypher Stent
n=109

Endeavor Stent
n=327

30 sites
United States

Primary Endpoint: In-segment Late lumen loss by QCA at 8 months
Secondary Endpoints: TLR, TVR, TVF at 9 months & ABR at 8 months
Antiplatelet therapy for > 3 mths

Clinical/MACE
Angio/IVUS

QCA
IVUS
E III PI & Core Labs

Principal Investigators
- Martin B. Leon, Lennox Hill Heart Vasc Inst, CRF, NY

QCA Core Lab
- Brigham and Women’s Hospital, Boston, MA, USA
 - Jeffrey J. Popma, MD

IVUS Core Lab
- Cardiovascular Core Analysis Lab
 - Stanford Interventional Cardiology, CA, USA
 - Peter Fitzgerald, MD

Data Coordinating Center
- Harvard Clinical Research Institute
 - Richard E. Kuntz, MD, MSc

ECG Core Lab
- Harvard Clinical Research Institute, Boston, MA, USA
 - Peter Zimetbaum, MD

Clinical Events Committee/DSMB
- Harvard Clinical Research Institute, Boston, MA, USA
 - Donald Cutlip, MD
Primary objective
To demonstrate the equivalency of the Endeavor™ Coronary Stent (10 μg/mm ABT-578) with Cordis’ Co CYPHER™ Sirolimus-Eluting Coronary Stent System for the treatment of single de novo lesions in native coronary arteries 2.5-3.5 mm in diameter.

Primary End-Point
In-segment late loss at 8 months as measured by QCA, defined as the difference between the post-procedure minimal lumen diameter (MLD) and the follow-up angiography MLD.
Inclusion criteria (Target lesion):
Same as Endeavor II, except:
- Target vessel must have \geq TIMI flow 2
- Target lesion length must be ≥ 10 & ≤ 24 mm
- Target vessel ref diam must be ≥ 2.5 & ≤ 3.5 mm

Exclusion criteria (Target lesion):
Same as Endeavor II, except:
- Treatment of one additional (non-target) lesion is permitted
ENDEAVOR Continued Access OUS
Single-arm Multi-center Registry

Single De Novo NCA Lesion
(Type A-B2)
Stent Diameter: 2.25-3.5 mm
Stent Lengths: 8-30 mm (8/9 mm bailout)
Lesion Length: 14 - 27 mm

10 μg ABT-578 per mm stent length
Direct Stenting – Per Investigator Discretion
for lesions ≤ 20 mm

N = 300

≤ 15 sites

Clinical/MACE

30d 6mo 8mo 9mo 12mo 2yr 3yr 4yr 5yr

Angio/IVUS

MACE

QCA N=150
IVUS N=100

Primary Endpoint:
MACE at 30 days

Secondary Endpoints:
TLR, TVR, TVF @ 9 mo, QCA & IVUS @ 8 mo

Antiplatelet therapy for ≥ 3 months
Medtronic Endeavor Update

Endeavor Preclinical
ABT-578 is a synthetic cytostatic agent similar to sirolimus that has been demonstrated to be safe and effective in reducing NIH in animal models.

Endeavor I
First in man trial - 4 mth results suggest that the ABT-578 eluting Endeavor Stent is safe and efficacious in the reduction of in-stent restenosis.

Endeavor II and III
Large scale randomized controlled trials: will provide definitive data regarding the safety and efficacy of the ABT-578 eluting Endeavor Stent.