The Optimal Use of IVUS Guidance in the Era of DES

Gary S. Mintz, MD

Cardiovascular Research Foundation

Diagnostic and Pre-intervention IVUS

- Assess lesion severity
- Weigh potential problems (i.e. LM disease, significant proximal or distal disease)
- Assess unusual lesion morphology
- When the angiogram, non-invasive tests, and clinical symptoms do not agree
- Assess vessel size and lesion length

IVUS Criteria for a 'Significant' Stenosis

 Based on the studies comparing IVUS to flow wire, pressure wire, or SPECT thallium and based on studies with clinical outcome - most feel that a lumen area less than 4.0 mm² in a proximal epicardial artery <u>excluding the</u> <u>Left Main</u> is a flow limiting stenosis

As shown in the CASS study, LM lesions are associated with the greatest inter and intraobserver variability of any angiographic segment

(*Cameron et al. Circulation 1983;68:484-489*)

Suggested IVUS Criteria for a 'Significant' LMCA Stenosis

- Most IVUS LMCA studies show either insignificant disease or critical disease, only a minority require careful quantification
- Lumen CSA <6.0mm² or MLD <3.0mm are suggested criteria for a significant LMCA stenosis
 - The sum of the lumen areas of the two daughter vessels (LAD and LCX, each of which should be 4.0mm²) = 150% of the parent (LM)
 - These correlated with an abnormal FFR.

Unusual Lesion Morphology

- Angiographic aneurysms
 - > True aneurysms
 - > Pseudoaneurysms
 - Complex/ruptured plaques
 - Normal segments adjacent to one or more stenoses
- Angiographic filling defects
 - > Thrombi
 - Calcified nodules
- Acute coronary syndromes
- Spontaneous dissections
- Angiographic hazy lesions

How does one use IVUS during drug-eluting stent implantation?

- Using pre-intervention IVUS, identify the proximal and distal reference segments
 - Largest lumen with least plaque
- Measure the reference segments to select stent size
- Measure distance between least diseased proximal and distal reference sites to select stent length (must use motorized pullback device to do this)
- After deploying stent, perform IVUS imaging to assess
 - Final stent CSA by IVUS (expansion)
 - > Apposition
 - Lesion coverage
 - Complications
- Determine whether additional "work" is required to optimize stent dimensions, completely cover the lesion, or treat complications

Predictors of Cypher Thrombosis @ CRF

•2,575 patients were treated with 4,722 Cypher stents.
•21 (0.8%) had stent thrombosis of whom 15 had IVUS
•12/15 SES thrombosis lesions has stent CSA <5.0mm² (vs 13/45 controls)

*Residual edge stenosis = edge lumen CSA <4.0mm² & plaque burden >70%.

Although the smallest acceptable DES MSA is less than with bare metal stents, the 90% predictive value means that most cases of DES failure will be stent underespansion

(Sonoda et al. J Am Coll Cardiol 2004;43:1959-63)

IVUS analysis of Cypher Failure @ CRF

- 27 patients with Cypher failure and IVUS compared to 29 non-restenotic Cypher stents ("controls")
 - Diabetes in 52% (vs 14% of controls, p<0.01)</p>
 - Unstable angina in 22% (vs 0% of controls, p<0.01)</p>
 - > Ostial location in 19% (vs 0% of controls, p<0.05)</p>
- IVUS findings
 - Minimum stent area (MSA) measured 4.5±1.7mm² (vs 6.5±1.6mm² in controls, p<0.01)</p>
 - Underexpansion (MSA<5.0mm²) in 18 patients (67% vs 21% of controls, p<0.01)</p>
 - No stent was seen in one patient at follow-up

Takebayashi et al. Am J Cardiol 2005;95:498-502

Columbia University Medical Center

CARDIOVASCULAR

Comparison of IVUS-measured minimum stent diameter (MSD) with the MSD predicted from four manufacturers' compliance charts (n=212) shows that stents achieve an average of only 75% of the predicted MSD

Predicted MSD (mm)

(Costa et al. Am J Cardiol, in press)

Iterative IVUS can be used to 'fine-tune' the final stent CSA and optimize expansion - Angiography cannot

QCA MLD (mm)

IVUS Stent CSA (mm²)*

*ANOVA P<0.0001

Use larger balloons at low pressures for unapposed stents

IVUS Predictors of Stent Edge Restenosis (>50% edge diameter stenosis @ 6 months) in SIRIUS Edge restenosis occurs when the stent edge "lands" in a relatively diseased reference segment and is oversized relative to the reference lumen

Baseline Parameters	Stent Edge Restenosis	No Edge Restenosis	р
Reference MLA (mm ²)	4.7 ± 2.3	6.5 ± 2.3	0.06
Reference Residual Plaque (%)	60.5 ± 9.0	49.1 ± 11.5	0.03
Edge SA / Reference MLA	1.5 ± 0.3	1.2 ± 0.3	0.03
Maximum Pressure (mm)	15.4 ± 3.2	16.9 ± 2.7	ns
Balloon / Artery Ratio	0.9 ± 0.1	1.0 ± 0.1	ns

Sakurai et al. ACC 2004

When compared to either neointima-free sections in the same stent or non-restenotic stents, the maximum IH area correlated with fewer stent struts and with a larger angle between adjacent stent struts.

Independent predictors of IH CSA, IH thickness, and MLA

EEM CSA (p<0.05)
P&M CSA (p<0.05)
Normalized # of struts (p<0.0001)
Maximum interstrut angle (p<0.0001)

Takebayashi et al. Circulation. 2004;109:1244-9

 While drug-eluting stents have nearly eliminated restenosis in clinical trials, there are still "real world" patients and lesions that have a relatively higher failure rate

Follow-up angiograms were available in 238 patients (441 lesions) in the RESEARCH Registry. Binary restenosis rates were

Treatment of in-stent restenosis	19.6%
Ostial location	14.7%
Diabetes mellitus	14.3%
Stent length >26mm	13.9%
Reference diameter <2.17mm	10.3%
Non-LAD lesion location	10.8%

Lemos et al. Circulation. 2004;109:1366-7

 Restenosis rates of DES bifurcation stenting was 25.7% (17/66 with angiographic follow-up): 14 at the ostium of the side branch and 4 in the main branch.

Colombo et al. Circulation. 2004;109:1244-9

Failure of Cypher Stent Treatment of In-stent Restenosis @ CRF

- Recurrence in 10 of 41 patients with in-stent restenosis treated with Cypher stents
 - Stent underexpansion (MSA <5.0mm²) in 8/10 recurrence in-stent restenosis lesions (80% vs 12/38 [38%] of nonrecurrent lesions, p=0.02) and 6/10 (60%) recurrent lesions had a MSA <4.0mm² vs 8/38 (18%) non-recurrent lesions (p=0.02)
 - <u>Gap between multiple Cypher stents was detected in</u> <u>3/10 recurrent lesions</u>: vs 1/38 non-recurrent lesion (p=0.005). The gap was not detectable angiographically, and it measured <1mm in length by IVUS.
- Therefore, complete lesion coverage and adequate stent expansion are important in the DES treatment of ISR.

Fujii et al. Circulation 2004;109:1085-1088

20 pts with IVUS of both branches after non-LM "crush" DES implantation showed frequent stent underexpansion at the side branch ostium

- Main vessel
 - Stent expansion= 92±17%
 - MSA <5mm² in 20%
 - MSA <4mm² in 10%

- Side branch
 - Stent expansion= 80±12%
 - MSA <5mm² in 90%
 - MSA <4mm² in 55%
 - Ostium is the site of MSA in 65%

Costa et al. J Am Coll Cardiol (in press)

Bifurcation stenosis treated with 2 Cypher stents

7-month Follow-up

Impact of MSA on DES Failure (WHC)

So, when is IVUS most appropriate?

Diagnostic purposes
High risk patient and lesion subsets

Diabetics
Ostial lesions
Long lesions
Small vessels

Treatment of in-stent restenosis
Drug-eluting stent failures

How should IVUS be used?

- Perform pre-intervention imaging to assess lesion severity, measure vessel size, and measure lesion length
- Select DES size based on vessel size
- Select DES length to end the proximal and distal ends of the stent in the least diseased sections
- Perform post-intervention imaging to assess minimum stent CSA, apposition, and lesion coverage
- Fine-tune the results as necessary

SAVE THE DATE

Sunday, October 16-Friday, October 21, 2005

WASHINGTON CONVENTION CENTER WASHINGTON, DC

TRANSCATHETER CARDIOVASCULAR THERAPEUTICS

Please visit www.CRF.org for more information.