Is the TAXUS Stent Benefit Extended to the Most Complicated Patients and Lesions?

Eberhard Grube MD
FACC, FSCAI

Heart Center Siegburg, Siegburg, Germany
Stanford University, School of Medicine, CA, USA
DES Clinical Trial Programs

- Single and Multicenter Registries
- Megatrials
- Cypher vs. Taxus Studies
- Complex Patient and Lesion Studies
- Endovascular Studies
- Drug Dose and Stent Design Studies

Pivotal & Core Studies
- safety
- efficacy
- durability

Siegburg / Stanford
TAXUS Clinical Development

Increasing complexity

<table>
<thead>
<tr>
<th></th>
<th>Stent Diameter</th>
<th>Lesion Length</th>
<th>Lesions</th>
<th>Vessels</th>
<th>Dose Formulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAXUS I</td>
<td>3.0-3.5 mm</td>
<td>10-12 mm</td>
<td>single</td>
<td>1 non-TV</td>
<td>0</td>
</tr>
<tr>
<td>TAXUS II</td>
<td>3.0-3.5 mm</td>
<td>10-12 mm</td>
<td>single</td>
<td>1 non-TV</td>
<td>0</td>
</tr>
<tr>
<td>TAXUS III-ISR</td>
<td>3.0-3.5 mm</td>
<td>10-12 mm</td>
<td>ISR</td>
<td>1 non-TV</td>
<td>0</td>
</tr>
<tr>
<td>TAXUS IV</td>
<td>2.5-3.5 mm</td>
<td>10-28 mm</td>
<td>single</td>
<td>1 non-TV</td>
<td>1</td>
</tr>
<tr>
<td>TAXUS VI</td>
<td>2.5-3.5 mm</td>
<td>(\leq 40) mm</td>
<td>multiple overlap</td>
<td>1 non-TV</td>
<td>1</td>
</tr>
<tr>
<td>TAXUS V</td>
<td>2.25-4.0 mm</td>
<td>(\leq 46) mm</td>
<td>multiple overlap</td>
<td>1 non-TV</td>
<td>1</td>
</tr>
<tr>
<td>TAXUS V-ISR</td>
<td>2.5-4.0 mm</td>
<td>(\leq 46) mm</td>
<td>ISR</td>
<td>1 non-TV</td>
<td>1</td>
</tr>
</tbody>
</table>
TAXUS Program

Clinical strategy

<table>
<thead>
<tr>
<th>Stent Diameter</th>
<th>Lesion Length</th>
<th>Lesions</th>
<th>Vessels</th>
<th>Dose Formulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAXUS I</td>
<td>3.0-3.5 mm</td>
<td>10-12 mm</td>
<td>single</td>
<td>0</td>
</tr>
<tr>
<td>TAXUS II</td>
<td>3.0-3.5 mm</td>
<td>10-12 mm</td>
<td>single</td>
<td>1</td>
</tr>
<tr>
<td>TAXUS III-ISR</td>
<td>3.0-3.5 mm</td>
<td>10-12 mm</td>
<td>ISR</td>
<td>1</td>
</tr>
<tr>
<td>TAXUS IV</td>
<td>2.5-3.5 mm</td>
<td>10-28 mm</td>
<td>single</td>
<td>1</td>
</tr>
<tr>
<td>TAXUS VI</td>
<td>2.5-3.5 mm</td>
<td>≤ 40 mm</td>
<td>multiple overlap</td>
<td>1</td>
</tr>
<tr>
<td>TAXUS V</td>
<td>2.25-4.0 mm</td>
<td>≤ 46 mm</td>
<td>multiple overlap</td>
<td>1</td>
</tr>
<tr>
<td>TAXUS V-ISR</td>
<td>2.5-4.0 mm</td>
<td>≤ 46 mm</td>
<td>ISR</td>
<td>1</td>
</tr>
</tbody>
</table>

- **Feasibility & Safety**
- **Efficacy**
- **Pivotal**
- **Indication Expansion**
Complex Lesions

- Long Lesions
- Small vessels
- Multiple Stenting
- Chronic Total Occlusions
- Unprotected left mains
- Bifurcations
- ...

Siegburg / Stanford
Complex Lesions

- Long Lesions
- Small vessels
- Multiple Stenting
- Chronic Total Occlusions
- Unprotected left mains
- Bifurcations
- ...
TAXUS VI: International Long Lesion Study

Mean lesion length (mm)
Complex Lesions & Procedures

% of Patients
N=446

- Long Lesions (≥ 26 mm): 18.6%
- Small Vessels (RVD < 2.5 mm): 27.8%
- Multiple Overlapping Stents: 27.8%
- Additional intervention in Non-target vessel: 23.5%
Long Lesions in TAXUS VI

Randomized
N=446

Lesion Length < 26 mm
N=360*

Control
N=188
TAXUS MR
N=172

Lesion Length ≥ 26 mm
N=83*

Control
N=38
TAXUS MR
N=45

*Patients with 12-month follow-up
Impact of Lesion Length on TLR (12 Months)

- **Lesion length <26 mm**
 - Control: 18.9% (35/185)
 - TAXUS MR: 9.9% (17/171)
 - P-value: 0.02

- **Lesion length ≥26 mm**
 - Control: 27.0% (10/37)
 - TAXUS MR: 4.4% (2/45)
 - P-value: 0.005

TLR rate (%)
Small Vessels in TAXUS VI

Randomized
N=446

RVD <2.5 mm
N=124*

Control
N=64

TAXUS MR
N=60

RVD ≥2.5 mm
N=322*

Control
N=163

TAXUS MR
N=159

*Patients with 12-month follow-up
Impact of Vessel Size on TLR (12 Months)

- **Control**
 - RVD < 2.5 mm: 30.6% (19/62), P = 0.0003
 - RVD ≥ 2.5 mm: 5.0% (3/60), P = 0.10

- **TAXUS MR**
 - RVD < 2.5 mm: 30.6% (19/62), P = 0.0003
 - RVD ≥ 2.5 mm: 16.8% (27/161)
Multiple Overlapping Stents in TAXUS VI

Randomized N=446

Single Stents N=274*
- Control N=140
- TAXUS MR N=134

Multiple Stents N=166*
- Overlapping Stents N=124*
- Control N=61
- TAXUS MR N=63

*Patients with 12-month follow-up
TLR with Overlapping Stents

Control TAXUS MR

P=0.0002

23.3 % 93%

14/60 1/63

1.6 %
Multi-Vessel Procedures

Randomized
N=446

Only Target vessel treatment
N=341

Control
N=173
TAXUS MR
N=168

Non-Target Vessel Treated
N=105*

Control
N=54
TAXUS MR
N=51

*Patients with 12-month follow-up
TLR in Patients with Non-Target Vessel Treated

Control

TAXUS MR

26.4%
P=0.04

14/53

63%

5/51

9.8%
12-Month TLR: Subset Summary

<table>
<thead>
<tr>
<th>Subset</th>
<th>RR (95% CI)</th>
<th>RR (95% CI)</th>
<th>RR (95% CI)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>All patients</td>
<td>0.42 (0.37, 0.48)</td>
<td>8.7 (8.3, 9.1)</td>
<td>20.6 (19.9, 21.3)</td>
<td>0.0004</td>
</tr>
<tr>
<td>Lesion length (\geq 26) mm</td>
<td>0.16 (0.09, 0.22)</td>
<td>27.0 (25.9, 28.0)</td>
<td>4.4 (3.9, 4.9)</td>
<td>0.005</td>
</tr>
<tr>
<td>RVD < 2.5 mm</td>
<td>0.16 (0.09, 0.22)</td>
<td>30.6 (30.1, 31.1)</td>
<td>5.0 (4.5, 5.5)</td>
<td>0.0003</td>
</tr>
<tr>
<td>Multiple overlapping stents</td>
<td>0.07 (0.03, 0.11)</td>
<td>23.3 (22.7, 23.9)</td>
<td>1.6 (1.3, 1.9)</td>
<td>0.0002</td>
</tr>
<tr>
<td>Non-target vessel treated</td>
<td>0.37 (0.32, 0.43)</td>
<td>26.4 (25.9, 26.8)</td>
<td>9.8 (9.2, 10.3)</td>
<td>0.04</td>
</tr>
</tbody>
</table>
TLR Independent of Classic Risk Factors

<table>
<thead>
<tr>
<th>Category</th>
<th>Control</th>
<th>TAXUS MR</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long lesions ≥26mm</td>
<td>27.0</td>
<td>4.4</td>
<td>0.005</td>
</tr>
<tr>
<td>Small vessels <2.5mm</td>
<td>30.6</td>
<td>5.0</td>
<td>0.0003</td>
</tr>
<tr>
<td>Overlapping stents</td>
<td>23.3</td>
<td>1.6</td>
<td>0.0002</td>
</tr>
<tr>
<td>Non-target vessel treated</td>
<td>26.4</td>
<td>9.8</td>
<td>0.04</td>
</tr>
</tbody>
</table>

TLR (%) for different lesion types and vessel treatments.
TAXUS VI Summary

TAXUS benefit in TAXUS VI trial is independent of classic risk factors

TLR reductions in...

- Long lesions: 84%
- Small vessels: 84%
- Overlapping stents: 93%
- Multivessel procedures: 63%
Siegburg Taxus ISR Registry

94 patients with 104 lesions over a 12 months period

<table>
<thead>
<tr>
<th>Type of stent used in previous intervention</th>
<th>n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bare metal stent</td>
<td>89 (85.6%)</td>
</tr>
<tr>
<td>Drug-eluting stents</td>
<td>15 (14.4%)</td>
</tr>
<tr>
<td>Paclitaxel-eluting</td>
<td>9</td>
</tr>
<tr>
<td>Tacrolimus-eluting</td>
<td>5</td>
</tr>
<tr>
<td>Everolimus-eluting</td>
<td>1</td>
</tr>
</tbody>
</table>
Siegburg Taxus ISR Registry

6-MONTH CLINICAL FOLLOW-UP (n=94 pts)

<table>
<thead>
<tr>
<th>Event</th>
<th>Count (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target lesion revascularization, n (%)</td>
<td>7 (7.4%)</td>
</tr>
<tr>
<td>PCI with DES</td>
<td>3 (3.2%)</td>
</tr>
<tr>
<td>PCI with balloon angioplasty</td>
<td>2 (2.1%)</td>
</tr>
<tr>
<td>CABG</td>
<td>1 (1.1%)</td>
</tr>
<tr>
<td>Brachytherapy</td>
<td>1 (1.1%)</td>
</tr>
<tr>
<td>Stent thrombosis, n (%)</td>
<td>1 (1.1%)</td>
</tr>
<tr>
<td>Myocardial infarction, n</td>
<td>0</td>
</tr>
<tr>
<td>Death, n</td>
<td>0</td>
</tr>
</tbody>
</table>
Siegburg Taxus ISR Registry

6-MONTH FOLLOW-UP (n=104 lesions)

<table>
<thead>
<tr>
<th>Late loss, mm</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>proximal</td>
<td>0.35 ± 0.65</td>
<td></td>
</tr>
<tr>
<td>in-stent</td>
<td>0.30 ± 0.50</td>
<td></td>
</tr>
<tr>
<td>distal</td>
<td>0.09 ± 0.66</td>
<td></td>
</tr>
<tr>
<td>in-segment</td>
<td>0.49 ± 0.61</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Binary restenosis, n (%)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>proximal</td>
<td>5 (4.8%)</td>
<td></td>
</tr>
<tr>
<td>in-stent</td>
<td>4 (3.8%)</td>
<td></td>
</tr>
<tr>
<td>distal</td>
<td>4 (3.8%)</td>
<td></td>
</tr>
<tr>
<td>in-segment</td>
<td>8 (7.6%)</td>
<td></td>
</tr>
</tbody>
</table>
Siegburg Taxus ISR Registry
PATTERN OF IN-STENT RESTENOSIS, n (%)

<table>
<thead>
<tr>
<th>Pattern</th>
<th>PRE</th>
<th>6-m FU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mehran I (Focal)</td>
<td>34 (32.7%)</td>
<td>4 (3.8%)</td>
</tr>
<tr>
<td>Mehran II (Diffuse intra-stent)</td>
<td>50 (48.1%)</td>
<td>0</td>
</tr>
<tr>
<td>Mehran III (Diffuse proliferative)</td>
<td>15 (14.4%)</td>
<td>2 (1.9%)</td>
</tr>
<tr>
<td>Mehran IV (Total occlusion)</td>
<td>5 (4.8%)</td>
<td>2 (1.9%)</td>
</tr>
</tbody>
</table>
Conclusions

• Efficacy of the TAXUS stent in the overall is extended to patients with classic risk factors for restenosis

• Larger studies are needed to prospectively evaluate contemporary DES use in high-risk cases