Late Loss Is The Single Best Parameter For Estimating Stent-Based Restenosis Resistance

Richard Kuntz
Brigham and Women’s Hospital
Harvard Medical School
Late Loss and DES

• Brief history of Late Loss
• Restenosis Endpoints
• Late Loss and Clinical Restenosis
• Late Loss Headroom
• Real Data on Late Loss and Clinical Restenosis
• Conclusion
New Restenosis Concepts

Acute Gain
Late Loss
Net Gain

Kuntz, ...Baim
The importance of acute luminal diameter in determining restenosis after coronary atherectomy or stenting. Circulation 1992;1827-1835
Human Proportional Injury Model

Late loss (neointimal surrogate) is proportional to acute gain (injury surrogate)

Loss Index: Ratio of Loss-to-Gain

Late Loss

• Intuitive measure of coronary obstruction potential
 – Measured at the follow-up MLD
 – Best measurement of the principal physiological flow resistor
 • Flow is reduced by the 4^{th} order of reduction in the radius of the MLD
 • Not described by volume estimators
• It is the target of drug therapy
 – That is, we aim to reduce maximum late loss!
FIM Sirolimus: Angiographic Results

Is This Going to be a Good Stent?

What is the In-stent Late Loss?

Late Loss = 0.11 mm

In-lesion MLD
RAVEL: 6-Month QCA (n=238)
Late Loss

-0.1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

p<0.001 0.8 0.47

-0.01 -0.05

Sirolimus n=120
Control n=118

mm
<table>
<thead>
<tr>
<th>Events</th>
<th>Sirolimus % n=533</th>
<th>Control % n=525</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Death</td>
<td>0.9 (5)</td>
<td>0.6 (3)</td>
<td>0.726</td>
</tr>
<tr>
<td>MI (all)</td>
<td>2.8 (15)</td>
<td>3.2 (17)</td>
<td>0.723</td>
</tr>
<tr>
<td>Q-wave</td>
<td>0.8 (4)</td>
<td>0.4 (2)</td>
<td>0.687</td>
</tr>
<tr>
<td>Non Q-wave</td>
<td>2.1 (11)</td>
<td>2.9 (15)</td>
<td>0.433</td>
</tr>
<tr>
<td>TLR (clinically driven)</td>
<td>4.1 (22)</td>
<td>16.6 (87)</td>
<td><0.001</td>
</tr>
<tr>
<td>TVR (non-TL)</td>
<td>3.2 (17)</td>
<td>4.8 (25)</td>
<td>0.210</td>
</tr>
<tr>
<td>MACE</td>
<td>7.1 (38)</td>
<td>18.9 (99)</td>
<td><0.001</td>
</tr>
<tr>
<td>TVF (1st Endpoint)</td>
<td>8.6 (46)</td>
<td>21.0 (110)</td>
<td><0.001</td>
</tr>
</tbody>
</table>
Pivotal DES Trial Comparisons

TLR to 9 Months

<table>
<thead>
<tr>
<th>Device</th>
<th>Control</th>
<th>DES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endeavor</td>
<td>12.1</td>
<td>4.6</td>
</tr>
<tr>
<td>Taxus</td>
<td>11.3</td>
<td>3.0</td>
</tr>
<tr>
<td>Sirius</td>
<td>16.6</td>
<td>4.1</td>
</tr>
</tbody>
</table>

IS LL = 0.62
IS LL = 0.39
IS LL = 0.17
Late Loss and DES

- Brief history of Late Loss
- Restenosis Endpoints
- Late Loss and Clinical Restenosis
- Late Loss Headroom
- Real Data on Late Loss and Clinical Restenosis
- Conclusion
Restenosis Endpoints

• **Target Lesion Revascularization**
 – Best endpoint in a randomized Trial
 – Needs large sample size for stable Estimation
 – High level of influence by case-mix confounders renders it almost meaningless in comparison across trials.

• **Late Loss (In-stent version only)**
 – Stable and efficient estimate for any stent-type
 – Less influenced by case-mix confounders, and provides a “signature” value for any particular stent.
Restenosis Endpoints
The Noise Factor

• **Target Lesion Revascularization**
 - Affected by
 • Lesion length
 • Diabetes prevalence
 • Reference vessel size
 • Threshold for revascularization (50-70% renarrowing)
 - Estimates are wide ranging for BMS and DES

• **In-Stent Late Loss**
 - Affected by
 • Diabetes
 • Lesion length
 - Relatively more stable across trials
Risk and Restenosis

Some Contemporary Clinical Restenosis Rates

Recent BMS and DES Trials

Mauri L, Kuntz R submitted for publication
Recent BMS and DES Trials

Mauri L, Kuntz R submitted for publication
Risk and Restenosis

Some Contemporary Clinical Restenosis Rates

Recent BMS and DES Trials

Mauri L, Kuntz R submitted for publication
In-Stent Late Loss and TLR
Current DES and BMS Results

TLR (%) vs Mean Late Loss (mm)

- Cypher
- Taxus
- Endeavor
- BMS
Late Loss and DES

- Brief history of Late Loss
- Restenosis Endpoints
- Late Loss and Clinical Restenosis
- Late Loss Headroom
- Real Data on Late Loss and Clinical Restenosis
- Conclusion
Late Loss Correlates with BAR in DES

Existing DES Trials
Points are all DES studies with Binary and LL reported (obviously time points etc vary between 6 and 12 months)
Late Loss is Monotonic (derived from 22 RCTS)

The higher the Late loss, the wider the standard deviation

This means that it is always better to have a lower late loss
In-Stent Late Loss Does Correlate with the Data!

Especially in the DES Late Loss Range

(L Mauri, R Kuntz, Circulation in press)
There is no Late Loss Threshold

- Biological effects are continuous
- In our 15 year BMS and DES experience, mean in-stent late loss ranges from 0.1 to 1.2
 - *The Lower The Better*
- Late Loss is Monotonic
 - There is never an advantage of having a higher late loss
- The real question is: What is the magnitude of the late loss effect on restenosis

To see the real relationship of late loss and predicted BAR, we need some mathematical treatment
Curvilinear Late Loss BAR Relationship
(L. Mauri, J Orav, R Kutz Circulation in press)

Mean Late Loss vs. Predicted Restenosis Rate

Binary Angiographic Restenosis (%) vs. Mean Late Loss (mm)
Follow-up Percent Diameter Stenosis

%DS is Correlated with In-Stent Late Loss

(22 Trials L Mauri, R Kuntz)
Risk and Restenosis

Late Loss and Clinical Restenosis

• Factors that put Late Loss into perspective
 – Threshold of late loss that leads to clinical revascularization
 • Thresholds are different across practices and countries
 • Lower for small vessels
 – Late Loss risk factors: diabetes and long lesions
 • Shift the late Loss curves to the right

Mauri L, Kuntz R submitted for publication
Frequency of Late Loss

In-stent Late Loss (mm)

Density (%)

Mean LL 0.2 mm
Mean LL 0.4 mm

Mauri L, Kuntz R submitted for publication
Frequency of Late Loss

Mean LL
- 0.6mm
- 1.0mm

In-stent Late Loss (mm)

Mauri L, Kuntz R submitted for publication
Density of Late Loss

Mauri L, Kuntz R submitted for publication
Density of Late Loss

mean late loss = 0.2mm

Mauri L, Kuntz R submitted for publication
Late Loss and TLR

Effect of mean reference vessel diameter

Threshold for TLR, if RVD = 2.8 mm
Threshold for TLR, if RVD = 3.5 mm

Mauri L, Kuntz R submitted for publication
Late Loss and TLR

Effect of small vessel stenting

Threshold for TLR
If RVD=2.2 mm

Threshold for TLR
If RVD=2.8 mm

Mauri L, Kuntz R submitted for publication
Density of Late Loss

Shift in Late loss Distributions

- Diabetics
- Long lesions

Small vessels

Mauri L, Kuntz R submitted for publication
Late Loss and TLR

Effect of High Risk Characteristics

Shift in Late loss Distributions

- Diabetics
- Long lesions
- Small vessels

Mauri L, Kuntz R submitted for publication
Late Loss and DES

- Brief history of Late Loss
- Restenosis Endpoints
- Late Loss and Clinical Restenosis
- Late Loss Headroom
- Real Data on Late Loss and Clinical Restenosis
- Conclusion
Late Loss Headroom

• Late Loss headroom is the space of extra late loss available for high risk restenosis case-mix cohorts
 – Headroom highest for low in-stent late loss stent systems
Late Loss Headroom

Mauri L, Kuntz R submitted for publication
Late Loss Headroom

Case-Mix 1

Headroom available, but not needed for this case-mix

Late Loss threshold for TLR

Mauri L, Kuntz R submitted for publication
Late Loss Headroom

Case-Mix 2

Late Loss threshold for TLR

Headroom allows for freedom for clinical restenosis

Mauri L, Kuntz R submitted for publication
Late Loss Headroom

• Late Loss headroom is the space of extra late loss available for high risk restenosis case-mix cohorts
 – Headroom highest for low in-stent late loss stent systems

• For low Late Loss stent systems, the headroom concept reduces the chance of high TLR over the wide range of case-mix risk
 – *Evident in real data from clinical trials*
Late Loss and DES

- Brief history of Late Loss
- Restenosis Endpoints
- Late Loss and Clinical Restenosis
- Late Loss Headroom
- Real Data on Late Loss and Clinical Restenosis
- Conclusion
Late Loss and TLR Inter-Relationship in Clinical Trials

• For low risk cohort studies and randomized trials, TLR will be low over a wide range of In-Stent Late Loss values
 – *In such case-mixes, DES stents should be valued on secondary characteristics of safety, deliverability, coverage, etc.*

• For moderate to high risk cohort studies and randomized trials, high in-stent late loss values should predict higher TLR rates
Cypher vs. Taxus II

Angiographic Rest.

- Cypher: 14
- Taxus: 22

P = 0.19

Clinical Rest. (TVR)

- Cypher: 8
- Taxus: 19

P = 0.02
SIRTAX: Late Luminal Loss

Follow-up Angiography in 527 Patients With 714 Lesions
SIRTAX: Binary Restenosis

Follow-up Angiography in 527 Patients With 714 Lesions

<table>
<thead>
<tr>
<th></th>
<th>CYPHER (n=345)</th>
<th>TAXUS (n=369)</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-Stent % of Patients</td>
<td>3.2</td>
<td>7.6</td>
</tr>
<tr>
<td>P</td>
<td>0.013</td>
<td>0.020</td>
</tr>
<tr>
<td>In-Segment % of Patients</td>
<td>6.7</td>
<td>11.9</td>
</tr>
<tr>
<td>P</td>
<td></td>
<td>0.020</td>
</tr>
</tbody>
</table>
SIRTAX: 9 Month Outcomes

<table>
<thead>
<tr>
<th></th>
<th>CYPHER (n=503)</th>
<th>TAXUS (n=509)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Death, MI, or TLR Primary Endpoint</td>
<td>6.2%</td>
<td>10.8%</td>
</tr>
<tr>
<td>TLR</td>
<td>4.8%</td>
<td>8.3%</td>
</tr>
</tbody>
</table>

P = 0.009
P = 0.025
Late Lumen Loss

Late lumen loss (in-segment)

\[P = 0.002 \]

Late lumen loss (in-stent)

\[P < 0.001 \]

Kastrati, A. ACC 05 LBCT Presentation
Restenosis

Angiog. Restenosis

- **CYPHER**: 6.9%
- **TAXUS**: 16.5%

P=0.03

Clinical Restenosis (TLR)

- **CYPHER**: 6.4%
- **TAXUS**: 12%

P=0.13

Kastrati, A. ACC 05 LBCT Presentation
Late Loss and DES

- Brief history of Late Loss
- Restenosis Endpoints
- Late Loss and Clinical Restenosis
- Late Loss Headroom
- Real Data on Late Loss and Clinical Restenosis
- Conclusion
Late Loss and Restenosis

TLR and Risk Concepts

- Late Loss is a measure of the propensity for repeat revascularization.
- Late Loss “Head Room” is the extra space available for higher risk lesions to provide freedom from repeat revascularization.
 - *It’s always good to have low late loss.*
- Restenosis Risk is important to consider when interpreting the impact of late loss.
 - *Some trials have low risk patients, and BMSs do well.*
 - *Some trials have high risk patients, and low late loss is needed.*
Late Loss and Restenosis

TLR and Risk Concepts

- When given any parameter for a new DES, a low TLR may be reflective of low restenosis risk in the studied cohort, but late loss (in-stent) will give the best estimate of restenosis resistance over the wide range of restenosis risk.