# Late Loss Is The Single Best Parameter For Estimating Stent-Based Restenosis Resistance

Richard Kuntz Brigham and Women's Hospital Harvard Medical School

# Late Loss and DES

- Brief history of Late Loss
- Restenosis Endpoints
- Late Loss and Clinical Restenosis
- Late Loss Headroom
- Real Data on Late Loss and Clinical Restenosis
- Conclusion

#### New Restenosis Concepts

Acute Gain Late Loss Net Gain

Kuntz, ...Baim The importance of acute luminal diameter in determining restenosis After coronary atherectomy or stenting. *Circulation* 1992;1827-1835



## Human Proportional Injury Model

Late loss (neointimal surrogate) is proportional to acute gain (injury surrogate)

Loss Index: Ratio of Loss-to-Gain

Kuntz, ...Baim. Generalized model of restenosis after conventional balloon angioplasty, stenting and directional atherectomy. *J Am Coll Cardiol* 1993;21:15-25.



# Late Loss

- Intuitive measure of coronary obstruction potential
  - Measured at the follow-up MLD
  - Best measurement of the principal physiological flow resistor
    - Flow is reduced by the 4<sup>th</sup> order of reduction in the radius of the MLD
    - Not described by volume estimators
- It is the target of drug therapy
  - That is, we aim to reduce maximum late loss!

# FIM Sirolimus: Angiographic Results



#### RAVEL: 6-Month QCA (n=238) Late Loss



# SIRIUS: Clinical Events All Events (To 9 Months)

| Events                         | Sirolimus %<br>n=533 | Control %<br>n=525  | P-value        |
|--------------------------------|----------------------|---------------------|----------------|
| Death                          | 0.9 (5)              | 0.6 (3)             | 0.726          |
| MI (all)                       | 2.8 (15)             | 3.2 (17)            | 0.723          |
| Q-wave<br>Non Q-wave           | 0.8 (4)<br>2.1 (11)  | 0.4 (2)<br>2.9 (15) | 0.687<br>0.433 |
| TLR (clinically driven)        | 4.1 (22)             | 16.6 (87)           | <0.001         |
| TVR (non-TL)                   | 3.2 (17)             | 4.8 (25)            | 0.210          |
| MACE                           | 7.1 (38)             | 18.9 (99)           | <0.001         |
| TVF (1 <sup>st</sup> Endpoint) | 8.6 (46)             | 21.0 (110)          | <0.001         |

## **Pivotal DES Trial Comparisons** *TLR to 9 Months*



## Late Loss and DES

- Brief history of Late Loss
- Restenosis Endpoints
- Late Loss and Clinical Restenosis
- Late Loss Headroom
- Real Data on Late Loss and Clinical Restenosis
- Conclusion

# **Restenosis Endponts**

#### Target Lesion Revascularization

- Best endpoint in a randomized Trial
- Needs large sample size for stable Estimation
- High level of influence by case-mix confounders renders it almost meaningless in comparison across trials.
- Late Loss (In-stent version only)
  - Stable and efficient estimate for any stent-type
  - Less influenced by case-mix confounders, and provides a "signature" value for any particular stent.

# Restenosis Endponts The Noise Factor

#### Target Lesion Revascularization

- Affected by
  - Lesion length
  - Diabetes prevelance
  - Reference vessel size
  - Threshold for revascularization (50-70% renarrowing)
- Estimates are wide ranging for BMS and DES

#### In-Stent Late Loss

- Affected by
  - Diabetes
  - Lesion length
- Relatively more stable across trials

#### Some Contemporary Clinical Restenosis Rates



#### **Recent BMS and DES Trials**

Mauri L, Kuntz R submitted for publication

#### Some Contemporary Clinical Restenosis Rates



**Recent BMS and DES Trials** 

Mauri L, Kuntz R submitted for publication

#### Some Contemporary Clinical Restenosis Rates



**Recent BMS and DES Trials** 

Mauri L, Kuntz R submitted for publication

#### In-Stent Late Loss and TLR Current DES and BMS Results



## Late Loss and DES

- Brief history of Late Loss
- Restenosis Endpoints
- Late Loss and Clinical Restenosis
- Late Loss Headroom
- Real Data on Late Loss and Clinical Restenosis
- Conclusion

## Late Loss Correlates with BAR in DES



Pacl. studies

#### 45 40 35 30 25 20 15 10 5 0 0 0.2 0.4 0.6 0.8 1 1.2

--limus studies

#### Existing DES Trials

Points are all DES studies with Binary and LL reported (obviously time points etc vary between 6 and 12 months)



Late Loss is Monotonic (derived from 22 RCTS) The higher the Late loss, the wider the standard deviation

#### This means that it is always better to have a lower late loss



## In-Stent Late Loss Does Correlate with the Data! Especially in the DES Late Loss Range

(L Mauri, R Kuntz, Circulation in press)



# There is no Late Loss Threshold

- Biological effects are continuous
- In our 15 year BMS and DES experience, mean in-stent late loss ranges from 0.1 to 1.2
  - The Lower The Better
- Late Loss is Monotonic
  - There is never an advantage of having a higher late loss
- The real question is: What is the magnitude of the late loss effect on restenosis

To see the real relationship of late loss and predicted BAR, we need some mathematical treatment

## **Curvilinear Late Loss BAR Relationship**

(L.Mauri, J Orav, R Kuntz Circulation in press)



#### Follow-up Percent Diameter Stenosis %DS is Correlated with In-Stent Late Loss (22 Trials L Mauri, R Kuntz)



#### Late Loss and Clinical Restenosis

#### Factors that put Late Loss into perspective

- Threshold of late loss that leads to clinical revascularization
  - Thresholds are different across practices and countries
  - Lower for small vessels
- Late Loss risk factors: diabetes and long lesions
  - Shift the late Loss curves to the right

# **Frequency of Late Loss**



# **Frequency of Late Loss**







### Late Loss and TLR Effect of mean reference vessel diameter



### Late Loss and TLR Effect of small vessel stenting



# **Density of Late Loss**



### Late Loss and TLR Effect of High Risk Characteristics



## Late Loss and DES

- Brief history of Late Loss
- Restenosis Endpoints
- Late Loss and Clinical Restenosis
- Late Loss Headroom
- Real Data on Late Loss and Clinical Restenosis
- Conclusion

## Late Loss Headroom

- Late Loss headroom is the space of extra late loss available for high risk restenosis case-mix cohorts
  - Headroom highest for low in-stent late loss stent systems

## Late Loss Headroom



# Late Loss Headroom Case-Mix 1



# Late Loss Headroom



### Late Loss Headroom

- Late Loss headroom is the space of extra late loss available for high risk restenosis case-mix cohorts
  - Headroom highest for low in-stent late loss stent systems
- For low Late Loss stent systems, the headroom concept reduces the chance of high TLR over the wide range of case-mix risk

- Evident in real data from clinical trials

#### In-Stent Late Loss and TLR Late Loss Headroom



## Late Loss and DES

- Brief history of Late Loss
- Restenosis Endpoints
- Late Loss and Clinical Restenosis
- Late Loss Headroom
- Real Data on Late Loss and Clinical Restenosis
- Conclusion

# Late Loss and TLR Inter-Relationship in Clinical Trials

- For low risk cohort studies and randomized trials, TLR will be low over a wide range of In-Stent Late Loss values
  - In such case-mixes, DES stents should be valued on secondary characteristics of safety, deliverability, coverage, etc.
- For moderate to high risk cohort studies and randomized trials, high in-stent late loss values should predict higher TLR rates



### Cypher vs. Taxus I











### Cypher vs. Taxus II



#### **SIRTAX: Late Luminal Loss**



Follow-up Angiography in 527 Patients With 714 Lesions

#### **SIRTAX: Binary Restenosis**



Follow-up Angiography in 527 Patients With 714 Lesions

#### **SIRTAX: 9 Month Outcomes**



# *isar-diabetes*Late Lumen Loss



# *ISAR-DIABETES* **Restenosis**



## Late Loss and DES

- Brief history of Late Loss
- Restenosis Endpoints
- Late Loss and Clinical Restenosis
- Late Loss Headroom
- Real Data on Late Loss and Clinical Restenosis
- Conclusion

# Late Loss and Restenosis TLR and Risk Concepts

- Late Loss is a measure of the propensity for repeat revascularization
- Late Loss "Head Room" is the extra space available for higher risk lesions to provide freedom from repeat revascularization
  - It's always good to have low late loss
- Restenosis Risk is important to consider when interpreting the impact of late loss
  - Some trials have low risk patients, and BMSs do well
  - Some trials have high risk patients, and low late loss is needed

## Late Loss and Restenosis TLR and Risk Concepts

• When given any parameter for a new DES, a low TLR may be reflective of low restenosis risk in the studied cohort, but late loss (in-stent) will give the best estimate of restenosis resistance over the wide range of restenosis risk.