Pathology of Vulnerable Plaque Angioplasty Summit 2005 TCT Asia Pacific, Seoul, April 28-30, 2005

Renu Virmani, MD CVPath, A Research Service of the International Registry of Pathology Gaithersburg, MD

Plaque Morphology of Thrombi in SCD

Gross and Light Microscopic Features of Plaque Rupture 60% of Thrombi in Sudden Coronary Death Are form Plaque Rupture

Plaque erosion in a 33 year-old female complaining of chest pain for two-weeks and discharged from the emergency room with a diagnoses of anxiety.

What is a Vulnerable Plaque?

- Plaque morphology underlying luminal thrombi represents a vulnerable plaque
 - Thin-cap Fibroatheroma Plaque rupture
 - Pathologic intimal thickening
 - Fibroatheroma

Plaque Erosion

Calcified plates with bone formation –
 Calcified nodule - surface thrombus

Thin cap Fibroatheroma is a Precursor lesions of Plaque Rupture

TCFA

Plaque Rupture

Thin-Cap Atheroma (Vulnerable Plaque) Components

- Necrotic core
- Thin fibrous cap (< 65 μm)
- Cap infiltrated by macrophages and lymphocytes
- Cap composition type 1 collagen and few smooth muscle cells

A Non-Hemodynamically Limiting Thin-cap Fibroatheroma

Morphologic Characteristics of Plaque Rupture and Thin-cap Fibroatheromas

Plaque type	Necrotic Core (%)	Fibrous cap Thickness (µm)	M Φs (%)	SMCs (%)	T- lymph	Calcification Score
Rupture	34±17	23±19	26±20	0.002±0.004	4.9±4.3	1.53±1.03
Thin-cap Fibroatherom	na 23±17	<65µm	14±10	6.6±10.4	6.6±10.4	0.97±1.1
P value	0.01		0.005	ns	ns	0.014

Mean values are represented \pm standard deviation. Abbreviations: M Φ s= macrophages, SMCs= smooth muscle cells, T-lymph= T-lymphocytes

Kolodgie F, et al. Current Opinion in Cardiology 2001;16:285

Morphological Variants of the Thin-Cap Fibroatheroma

Insignificant Plaque burden Large eccentric necrotic core

NC

Large concentric necrotic core

Healed Rupture(s)

Kolodgie F, et al. Current Opinion in Cardiology 2001;16:285

Vulnerable Plaque Characteristics

Do TCFAs lead to plaque progression ?

Sirius red

Sirius red with polarized light

Mean % Stenosis Increases with Number of Prior Rupture Sites but the Increase with Each New Rupture is Small (<20%)

Burke, A P et al. Circulation 2001;103:9364-940

Percentage of Cross-Sectional-Area Narrowing by Plaque Morphology

Necrotic core size, sum mm², independent of plaque area, morphometrically determined, at maximal luminal narrowing of 3 major epicardial arteries

Relationship of Fibrous Cap Thickness to Macrophage Infiltration

Correlation of Fibrous Cap Thickness and Macrophage Infiltration

Relationship of Fibrous Cap Thickness to Underlying Percent Necrotic Core

Correlation of X-Ray Calcification with Plaque type

Calcified Matrix Determined Histologically Severe Coronary Artery Disease, n=36, 64<u>+</u>14 yrs Coronary Arteries Serially Sectioned

Proportion and types of "unstable" plaques, by approximate distance from ostium

Number of Thin-Cap Atheromas in Various Coronary Syndromes in Males and Females

Fig 2-11

Frequency of thin cap atheroma, by mechanism of death

RCA

Thin cap fibroatheroma

nc

atheroma

Plaque rupture

43-year old WM collapsed at work and could not be resuscitated.

Fig. 11

Comparison of the Length, Necrotic Core Area and % Necrotic core/plaque Area

Dimensions	Fibroatheroma	Thin-cap Atheroma	Plaque Rupture
Length, mm, mean/Range	6 mm (range 1-18 mm)	8 mm (range 2-16 mm)	9 mm (range 2.5-22 mm)
Necrotic core area mm2	1.2 ± 2.2	1.7 ± 1.1	3.8 ± 5.5
% necrotic core/plaque area	15 ± 20 %	23 ± 17 %	34 ± 17 %

Serial Sections of a Thin-Cap Fibroatheroma Cut 250 mm apart Β A D С

Serial Coronary Sections (mm) Demonstrating Multiple Vulnerable Plaques and Rupture Sites —> Proximal LCx

Remodeling in Varying Coronary Lesion Morphologies

Mean Number of Thin Cap Fibroatheromas and Serum Cholesterol in Men

Mean Number of Thin-Cap Fibroatheromas in 51 Women with SCD and Severe Coronary Disease A Comparison of Risk Factors

Cholesterol

Serum hs-CRP correlated with Immunohistochemical staining intensity of Plaques and with TCFA

CRP	CRP staining intensity of plaques*	Mean number of thin cap atheroma
Low CRP group (<1.0µg/mL)	2.9 <u>+</u> 0.5	0.95 <u>+</u> 0.22
High hs-CRP group (>3.2µg/mL)	6.2 <u>+</u> 0.6	3.0 <u>+</u> 0.3

*Grading of staining intensity was assessed on macrophages and Lipid core. A quantitative score of 0 to 4 was applied to each. A sum of the 2 scores resulted in overall grading system of 0 to 8

Thin Cap Fibroatheroma-A plaque vulnerable to rupture ?

Definition

- Frequency is higher in AMI than SCD, >males than females
- ✓ Higher prevalence in the presence of high TC, low HDL-C, high TC/HDL-C ration, high hs CRP (>3.2 mg/dl)
- Location in SCD, proximal and mid LAD, RCA, and LCX
- Length 2-22 mm (mean 8 mm)

✓% luminal narrowing (80% of TCFAs occur in lesions <50% diameter stenosis)</p>

% necrotic core is <25% of plaque area in 70% of TCFAs
Calcification is not a marker of TCFA