Clinical Relevance of Stent Fractures for the Treatment of Long SFA Obstructions: the FESTO Study-

G. Biamino

University of Leipzig – Heart Center Department of Clinical and Interventional Angiology Leipzig, Germany

Stenting the SFA

Maintaining long-term patency after recanalization and stenting of obstructed **Superficial Femoral Arteries** (SFA) is still one of the most challenging aspects of endovascular therapy.

Stenting the SFA (Charite, Berlin 1997-98) N: 268 One Year Patency Rate according to stented length

primary patency assisted prim. patency secondary patency

Stenting the SFA

NITINOL STENTS:

THE BREAKTHROUGH ?

Occlusion of the right SFA I

Occlusion of the right SFA II

Occlusion of the right SFA III

Self-expanding Nitinol Stent

 According to some recent non randomized studies, the results using Nitinol stents are generally superior to the results reported in the past using ballonexpandable and self-expandable stainless-steel stents.

SMART vs. Wallstent in the SFA

Primary Patency

Stenting Long SFA Lesions

 The high incidence of restenoses has been generally considered a consequence of intimal hyperplasia following

 the incresed vessel wall stress induced by the stent

 and/or the uncontrolled progression of the sclerotic disease. Triggered by the SIROCCO I observation and by the unclear clinical impact of the phenomenon of stent fractures a systematic x-ray evaluation of all patients after SFA stent implantation was initiated

• 121 treated legs with a total of (261 implanted stents could be investigated.

Mean length of stented segment 15.7 cm

Stenting (only) on indication:

–Persistent diameter reduction > 50 % after prolonged ballon inflation.

-Flow limiting dissection after PTA

Results X-Ray Screening 10.7mo follow-up

• Fractures in 45 of 121 treated legs:

37.2%

• Fractures in 64 of 261 implanted stents:

Minor Fracture

Moderate Fracture

Severe Stent fractures and In-stent restenoses

Results of X-Ray Screening

 Prevalence of stent fractures and length of the stented segments:

- < 8 cm segment length (13.2%)(5/38 legs)</p>

- >8 <16 cm segment length(42.4%)(14/33)</p>

- >16cm (3 or more stents) (52.0%) (26/50)

Level Dependent Stress of the Superficial Femoral Artery

Superficial femoral artery: A mechanical model

Cadaver study on stented and unstented arteries

Axial compression/extension

Results of X-Ray Screening Distribution of fractures along the SFA -Proximal segment 19.4% -Middle segment 28.4% -Distal segment 23.7%

Results of X-Ray Screening

• Clinical Impact of Stent Fractures:

– Restenosis >50% at 32 fracture sites (32.8%)

– Stent occlusion at 22 fracture sites

-No reobstruction at 21 fracture sites

Scheinert et al. J Am Coll Cardiol Jan 18,2005

34.4%

32.8%

Femoropopliteal Stent-Fracture

Treatment of the Aneurysm with a Covered Stent

Treatment of the Stenosis with PTA

Nitinol stents : Surface finishing

Stent fractures

Role of surface defects and microcracks

Under repeated and cyclical stresses

...microcracks propagate...

...until the remaining contact area of the stent yields and fails

Pattern design Role of axial stiffness

Is it still reasonable to treat long SFA-lesions with stents?

Results of Stenting Long SFA-Lesions

64 patients treated with SMART-stents

- Lesion length
 Total occlusions
 59.4 %
- Diabetics **43.7** %

• Primary patency rate

- 6 months 96.3 %
- 12 months 82.1 %

• Fracture rate **15.1%**

Results of X-Ray Screening

Test Capabilities for SFA Stents

Pulsative fatigue testing

Stretch and twist testing

Flexation testing

Before thinking about DES for the SFA, changes in the mechanical performance of the Nitinol stents are mandatory.

Results of X-Ray Screening

	Smart (n = 64)	SelfX (n = 58)	Luminexx (n = 56)
n Pat X-Ray	53 (82,8%)	29 (50%)	48 (58,7%)
X-Ray- time (Month)	15,5 ± 4,9	11 ± 4	9,1 ± 4,1
Stentfractur (n / %)	8 (15,1 %)	9 (31,0%)	25 (52,1%)
Grading			
1	3 (37,5%)	4 (44,4%)	4 (16%)
2 3	3 (37,5%) 2 (25%)	3 (33,3%) 2 (22,2%)	5 (20%) 14 (56%)

Impact of stent fracture on stent patency

Primary Patency Rates

	S.M.A.R.T	SelfX	Luminex
	100%	98,2%	94,5%
3Mont		50,270	07,070
lfs	96,3%	87,1%	77,2%
Month	90,3%	75,6%	51,3%
IVIONTN			
Month	82 1%	43.9%	27 1%
12			
Month			

Superficial femoral artery A mechanical model

