

Background

- PCI of unprotected LM stenosis is feasible & good long term outcome has been reported particularly in pts with good LV
- PCI of unprotected LM <u>bifurcation</u> stenosis (ULMBS) is more chalenging & risky, particularly if it is associated with multivessel disease or poor LV function
- Although preliminary experiences with the use of DES for ULMBS is encouraging, the results are still not consistent & medium - to - long term follow-up is still lacking

DES in LM Registries Restenosis Rate

Purpose of study

The assess clinical & angiographic outcomes of DES as opposed to Bare Metal Stents (BMS) implantation in unprotected LM bifurcation stenosis

Methods

- Comparison of all consecutive pts with unprotected LM bifurcation stenosis treated with DES with the historical control group of consecutive pts treated with BMS
- Clinical assessment & follow-up:
 - in-hospital, & at 3, 6 & 12 months
- Angiographic follow-up:
 - at 6 months or
 - earlier if clinical presentation or non-invasive evaluation suggested presence of ischemia

Methods

- Symptomatic or asymptomatic LM bifurcation stenosis of ≥ 50% with documented ischemia, regardless of age, presence of MVD or LV function
- Exclusions:
 - AMI
 - Bail out situation
 - Instent restenosis
 - Contraindications to anti-thrombotic therapy
 - Patient's preference to CABG

Procedures

Antiplatelets:

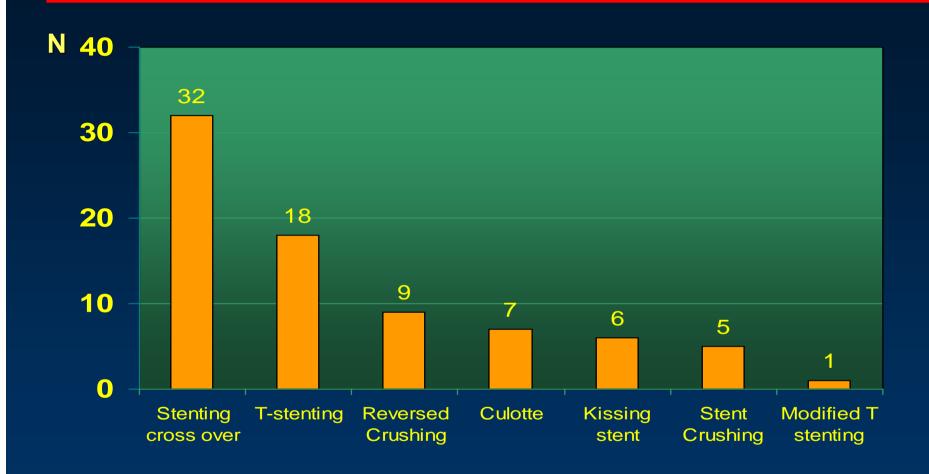
- BMS: aspirin (indefinitely) + clopidogrel or ticlid (1 month)
- DES: aspirin (indefinitely) + clopidogrel (6-9 months)
 + cilostazol + GP IIb/IIIa inhibitor

Stents:

- BMS: Crossflex, Bx-velocity, JoStent, NIR, Be-stent, Crown, Tetra, Kalam Raju
- DES: Cypher, or Taxus (+ BMS in LAD/LCX)

Patient characteristics (1)

	DES	BMS	p
No	78	56	
Age (yrs, mean <u>+</u> SD)	61.3 <u>+</u> 9.9	59.3 <u>+</u> 12.3	ns
Male	60 (77%)	44 (79%)	ns
Family history of CAD	20 (26%)	13 (23%)	ns
Diabetes	25 (32%)	12 (21%)	0.04
Hypertension	21 (27%)	12 (21%)	ns
Dyslipidemia	37 (47%)	26 (46%)	ns
Smoking	26 (33%)	21 (37%)	ns
Prior MI	13 (17%)	11 (20%)	ns
Prior CABG	3 (3%)	2 (4%)	ns
Prior PCI	9 (11%)	7 (12%)	ns


Patient characteristics (2)

	DES	BMS	p
No Angina	78	56	
StableUnstable	35 (45%)	25 (45%)	ns
• Silent ischemia	33 (42%) 10 (13%)	22 (39%) 9 (16%)	
Extent of CAD			
LM only	0 (0%)	0 (0%)	ns
• LM + 1VD	8 (10%)	6 (11%)	ns
• LM + 2VD	29 (37%)	28 (50%)	<.001
• LM + 3VD	41 (53%)	22 (39%)	<.001
LVEF (%, mean <u>+</u> SD)	52 <u>+</u> 25	51 <u>+</u> 21%	ns

Procedural Characteristics

	DES	BMS p
Stenting procedure		
Max. pressure (atm)	16.5 <u>+</u> 2.9	15.3 <u>+</u> 4.8 ns
Final stent length (mm)	27.1 <u>+</u> 13.0	17.1 <u>+</u> 8.3 0.01
 Stent length / lesion length ratio 	1.4 <u>+</u> 0.8	1.5 <u>+</u> 0.9 ns
 Stent overlap 	60 (76%)	32 (56%) 0.02
Antiplatelets		
Aspirin + Plavix / Ticlid	78 (100%)	56 (100%) ns
• + Cilostazol	6 (8%)	0 (0%) ns
+ GP IIb/IIIa inhibitors	5 (6%)	0 (0%) ns
Adjunctive procedure		
Use of IVUS	0 (0%)	9 (16%) <.001
Use of debulking		
Rotablation	0 (0%)	20 (36%) <.001
DCA	5 (7%)	5 (9%) ns
Silverhawk / Foxhollow	3 (4%)	0 (0%) ns
Use of IABP	0 (0%)	0 (0%) ns

Types of LM bifurcation stenting

- Always finish with <u>kissing-balloon dilatation</u>
- Always try to avoid gap between stents
- Always try to completely appose stent to the vessel wall

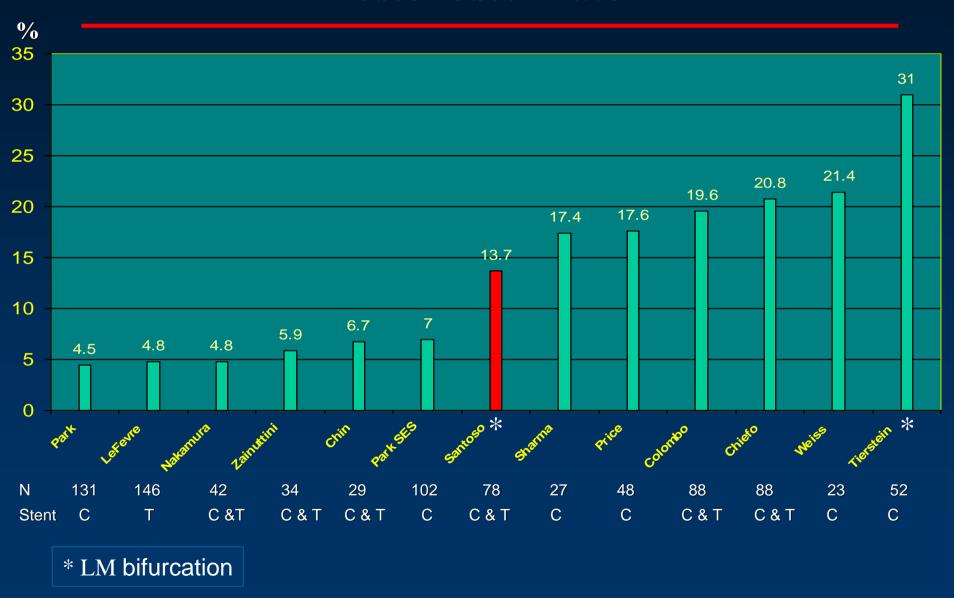
In-hospital results

	DES	BMS	p
Success Rate:			
Procedural	100 %	100%	ns
Clinical	100 %	98.2%	ns
Complications:			
Cardiac deaths	0	0	ns
Noncardiac deaths	0	1*	ns
Nonfatal QMI	0	0	ns
Nonfatal NQMI	0	1#	ns
Any nonfatal MI	0	0	ns
Emergent CABG	0	0	ns
■ PCI, TLR	0	0	ns
Acute thrombosis	0	0	ns

^{* 1} Hemorrhagic stroke at day 6; # Guide wire perforation, tamponade, NQMI

6-month clinical outcome

	DES	BMS	p
	((222)	
• No	72 (92%)	55 (98%)	
Cardiac deaths	2 (2.8%)	2 (3.6%)	ns
 Noncardiac deaths 	0	1 (1.8%)	ns
 Nonfatal QMI 	0	0	ns
 Nonfatal NQMI 	0	0	ns
• CABG	3 (4.2%)	7 (12.7%)	<.001
• PCI, TLR	4 (5.6%)	4 (7.3%)	ns
Angina	7 (9.7%)	14 (25.4%)	<.001
Late thrombosis	0	0	ns
 MACE free survival 	63 (88%)	42 (76%)	<.001


12-month clinical outcome

	DES	BMS	p
 No Cardiac deaths Noncardiac deaths Nonfatal QMI Nonfatal NQMI CABG PCI, TLR Angina Late thrombosis MACE free survival 	57 (73%) 2 (3.5%) 1 (1.8%) 0 0 3 (5.3%) 4 (7.0%) 9 (15.8%) 0 48 (84%)	52 (74.3%) 4 (7.7%) 1 (1.9%) 0 0 10 (19.2%) 5 (9.6%) 18 (34.6%) 0 33 (63%)	ns ns ns ns s <.001 ns <.001 ns <.001


QCA: 6 month angiographic follow-up

	DES	BMS	p
• No	51 (66%)	38 (68%)	
Ref. diameter (mm)	3.64 <u>+</u> 0.58	3.80 <u>+</u> 0.41	0.05
Lesion length (mm)	18.9 <u>+</u> 13.2	11.4 <u>+</u> 6.3	0.04
• MLD pre (mm)	1.12 <u>+</u> 0.53	0.99 <u>+</u> 0.56	ns
• MLD post (mm)	3.69 <u>+</u> 0.53	3.74 <u>+</u> 0.46	ns
• MLD f/up (mm)	3.47 <u>+</u> 0.45	2.74 <u>+</u> 1.07	<.001
Late loss (mm)	0.22 <u>+</u> 0.14	1.00 <u>+</u> 1.02	<.001
Binary restenosis (mm)	7 (13.7%)	12 (31.6%)	<.001

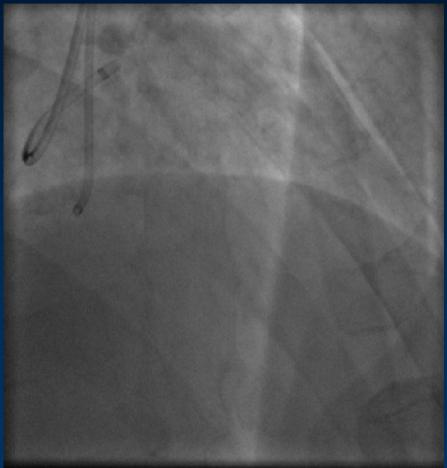
DES in LM Registries (2005): Restenosis Rate

LM stenting with DES & Freedom from MACE

* LM bifurcation

Case 1: LM bifurcation stenosis, & severe diffuse triple vessel disease

TH, male, 45 yrs. old, severe AP, LM & severe diffuse triple vessel disease



Baseline, LSO view

TH, male, 45 yrs. old, severe AP, LM & severe diffuse triple vessel disease



Baseline, RSO view

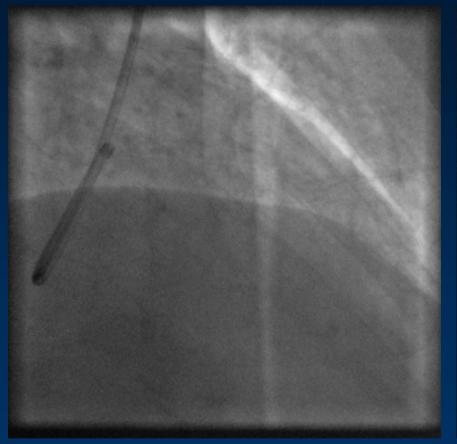
Final, LSO view

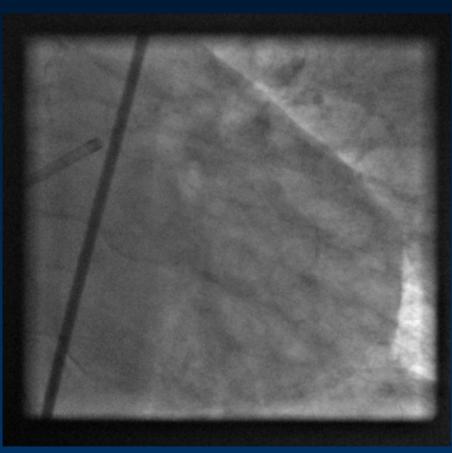
Final, RSO view

After Y-stenting of LM bifurcation:

- one Cypher stent in LM-LAD
 (overlapping with another Cypher stent in LADp) &
- one Cypher in LM-LCX (overlapping with another 2.5/13 mm Bx-sonic stent in LCXp)

6- month angiographic follow-up

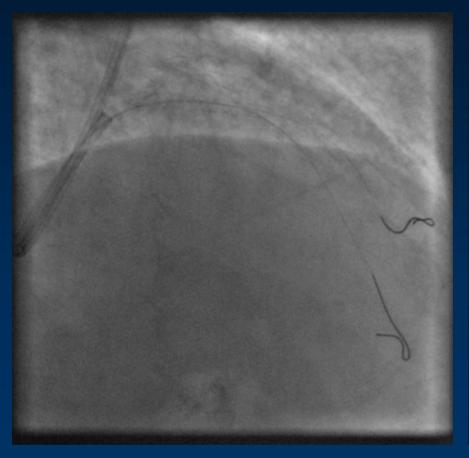


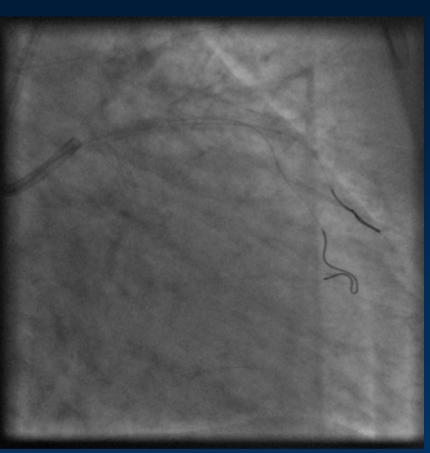

LSO view RSO view

Restenosis only at the overlapped site of Cypher & Bx sonic stents in LCXp

Case 2: LM bifurcation stenosis treated with modified T-stenting

LM bifurcation + LADp & LCXp stenoses (Baseline)





RSO view

PA-Caudal view

After Modified T-stenting with 2 Cypher stents: LM-LAD = 3.0/33 mm & LM-LCX = 2.5/18 mm

RSO view

PA-Caudal view

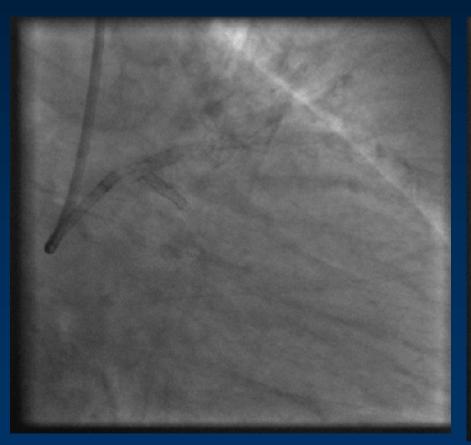
6-month angiographic follow-up

LIO view

Restenosis at LCX ostium, in the gap between both stents

Good result after 2nd PCI: Implantation of another Cypher 3.0/8 mm to LM-LCX & kissing balloon dilatation

LIO view


PACaudal view

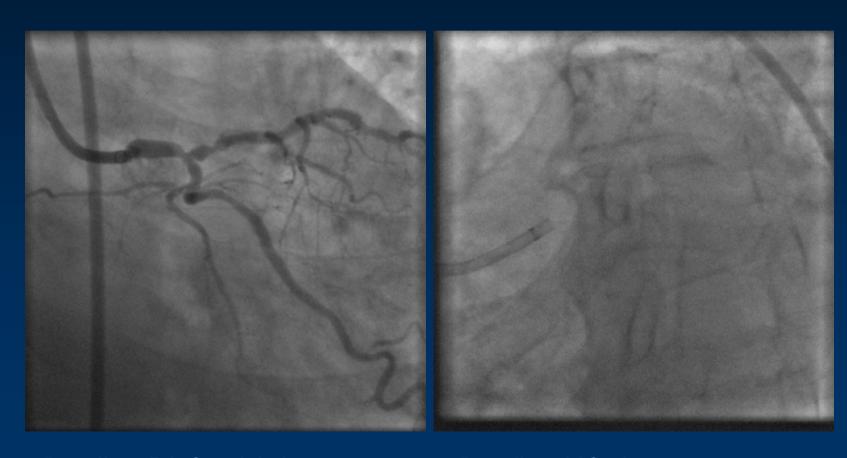
Severe Instent restenosis after 6 months

RIO view LIO view

Good result after 3rd PCI: Implantation of another Cypher 3.0/13 mm to LM-LAD & TAXUS 2.75/20 to LM-LCX, kissing stent technique

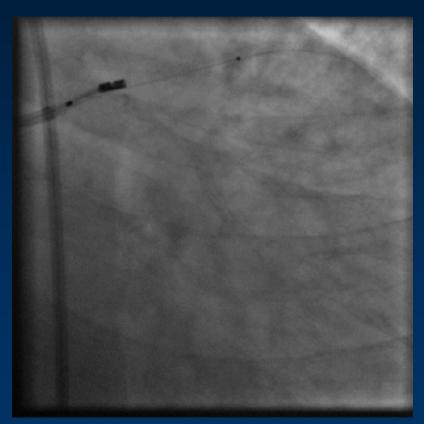
RIO view

LIO view


Case 3: Atherectomy + DES in a patient with LM bifurcation & proximal LAD stenosis (1)

Case 3: SilverHawk atherectomy + DES in a patient with LM bifurcation & proximal LAD stenosis (1)

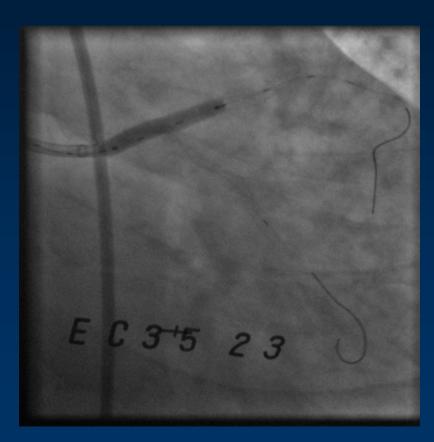
Baseline: PA Caudal view


Case 3: SilverHawk atherectomy + DES in a patient with LM bifurcation & proximal LAD stenosis (1)

Baseline: PA Caudal view

Baseline: LIO view

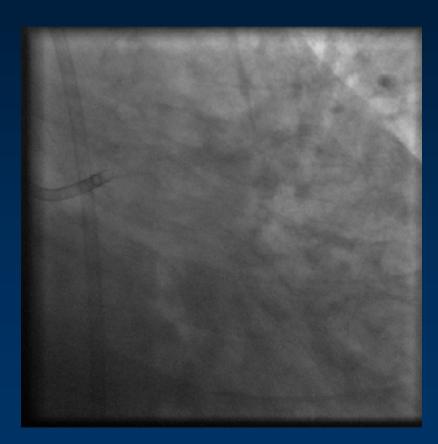
Case 3: SilverHawk atherectomy + DES in a patient with LM bifurcation & proximal LAD stenosis (2)



Atherectomy using SilverHawk 2740

Post-atherectomy

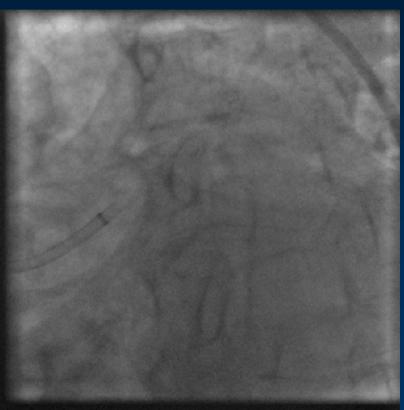
Case 3: SilverHawk atherectomy + DES in a patient with LM bifurcation & proximal LAD stenosis (3)



Placement of EXCEL stent

Kissing balloon post-dilatation

Case 3: SilverHawk atherectomy + DES in a patient with LM bifurcation & proximal LAD stenosis (4)



Final result: PA Caudal view

Case 3: SilverHawk atherectomy + DES in a patient with LM bifurcation & proximal LAD stenosis (4)

Final result: PA Caudal view

Final result: LIO view

Conclusions

- Despite all the limitations of the study (non-randomized, enrollment of "all-comers" population, heterogenous population, differences in technique & drug protocol, etc). the use of drug-eluting stent in unprotected LM bifurcation stenosis is safe & feasible with acceptable short & medium term result
- Further studies with extended follow-up are warranted to confirm these preliminary results (SYNTAX, COMBAT)