Eric Eeckhout Service de Cardiologie Centre Hospitalier Universitaire Vaudois Lausanne Switzerland Eric.Eeckhout@chuv.hospvd.ch

0

aten

e

Background

Patent foramen ovale : Prevalence of 25% (19-36%). Remnant of fetal circulation.

Mischievous potential.

Dynamic anatomic structure. (Valsalva)

Background

Atrial septal aneursysm : (ASA)

Prevalence $\pm 1\%$.

Prevalence on TEE : 1.9% : excursion \geq 10mm 0.22% : excursion \geq 15mm

Scope of the problem – the pathology

- 1. Migraine.
- 2. TIA cryptogenic stroke.
- 3. Orthodeoxia- platypnea syndrome.
- 4. Decompression sickness in divers.

Scope of the problem - mechanism

1. Chemical mediators ?

2. Paradoxal venous embolism.

3. Increased right – left shunting of venous blood.

4. Gas passage.

-> Taking advantage of the PFO

Scope of the problem - epidemiology

Overell JR. Neurology 2000;55:1172-9

Study	Cryptogenic n/N	Known caus n/N	se OR (95%Cl Fixed)	Weight %	OR (95%Cl Fixed)
Cabanes, 1993 (P)	36 / 64	7 / 36		□ → 25.2	5.33[2.04,13.94]
Di Tullio, 1992 (P)	10/21	1/24		3 .1	20.91[2.37,184.53]
Jeanrenaud 1990 (P)	8/11	0/5		1.2	26.71[1.14,624.27]
Job, 1994 (P)	27 / 41	11 / 33		26 .7	3.86[1.46,10.17]
Jones, 1994 (P)	4/14	3/12		14.8	1.20[0.21,6.88]
Lechat, 1988 (P)	20 / 41	4/19		18.0	3.57[1.01,12.61]
Ranoux, 1993 (P)	31 / 54	1/14		4.3	17.52[2.14,143.70]
Webster, 1988 (P)	19/34	1/6		→ 4.8	6.33[0.67,60.17]
Yeung, 1996 (P)	16/27	0 / 15		1.7	44.48[2.41,820.67]
Total(95%Cl)	171 / 307	28 / 164	-	100.0	6.00[3.72,9.68]
Chi-square 9.70 (df=8) P: 0.29					
A	.1 .2 1 5 10 Negative association Positive association				
Study	Cryptogenic n/N	Known caus n/N	e OR (95%Cl Random)	Weight %	OR (95%Cl Random)
Di Tullio, 1992 (P)	9/24	6/77		1 → 26.4	7.10[2.20,22.96]
Jones, 1994 (P)	10 / 57	18 / 137		34.8	1.41[0.61,3.27]
Yeung, 1996 (P)	27 / 89	17 / 79		38.8	1.59[0.79,3.20]
Total(95%Cl) Chi-square 5.56 (df=2) P: 0.06	46 / 170	41 / 293		100.0	2.26[0.96,5.31]
		.1		10	
В	Negative association Positive association				

PFO prevalence 40-70% amongst cryptogenic stroke pts

5 fold higher PFO prevalence in young cryptogenic stroke pts

Rationale for intervention The PFO – ASA trial : (n=581)

Rationale for intervention

 Identified high risk clinical & morphological features for recurrence :

> Hypercoagulable state. Previous stroke. (Stroke following Valsalva).

PFO & ASA.
Spontaneous bubbles passage at rest.
Long PFO tunnel.
Eustachian valve vs. PFO.
> 20 bubbles with large PFO on Valsalva.

How to build up a PFO program

- Be convinced & interested.
- Ask a good friend to perform the imaging.
- Be sure your diagnosis is accurate.
- Build up a multi-disciplinary approach with the neurologist.
 - => treat the real cryptogenic stroke.
- Go for training...& start (find pts).

Essential :

Diagnosis & screening. Guide during intervention. Confirm procedural success during FU.

- Trained, devoted, motivated echographist is a prerequisite for success.
- & an echo-minded interventionalist...

- Diagnostic steps : Morphology. Functional assessment. Provocative measures.
- Transthoracic : First step. Dynamic screening.
- Transoesophageal : Septal mobility & fine morphology.

Baseline TTE

TEE : dynamic measures on Septum 1

TEE : Eustachian valve

TEE : dynamic testing

- As many techniques as operators : Conscious pt. Sedated pt. Sleeping pt.
- Primary outcome measures : Immediate technical success. Complete PFO closure at FU. Low or absent neurological recurrence rate.

Our approach (keep it simple) : Awake patient. No contrast. No pressure measurements. No balloon sizing. Principally one device type. Same team... Intracardiac echo guidance. Anatomical screening. **Device selection.**

A closure device

The intervention :

Loading the device in the Mullins

The intervention :

The Mullins catheter

The intervention :

Deployment of the left side of the device

The intervention :

ICE & fixed device

The intervention :

Δ in the angle of the septum % sept II thinkness

The intervention :

Δ in the angle of the septum % sept II thinkness

The intervention :

Following deployment

Dynamic testing

The intervention :

Left part of device

Inadequate deployment

Intracardiac echo

Improved image definition

Intracardiac echo

Improved image definition

Unusual case example

Results

- Principally excellent.
- Closure rates >80%.
- Complications : rare. Thrombus : 2-3%. (adequate antiplatelet T). Infection : ? Device migration. Perforation.
- Literature is a mixbag of indications, techniques & devices...

A few words of caution

- Meticulous diagnosis.
- Correct indication.
- Beware learning curve, be well trained.
- Teamwork.
- Don't forget the follow-up.
- Most feared complications : Fistulae. Thrombus formation. Erosion.
- Very long-term not known.

Conclusions & future directions

- At least 2 randomized controlled trials ongoing in cryptogenic stroke.
- One RCT in migraine.
- Awaiting the results, a restrictive policy (high risk pts) is probably indicated.
- The procedure has to be patient-friendly and safe (approaching 0% risk).
- Personal prognosis : migraine may become the first indication in the future.

