

Bioabsorbable Stents

Ron Waksman, MD, FACC, FSCAI Professor of Medicine, Georgetown University, Associate Chief of Cardiology, Washington Hospital Center, Washington DC

Why absorbable stents?

Why permanent stents?

Vessel scaffolding is necessary only for a certain, limited time, than the permanent implant has no known advantage

- Short duration of Plavix post stenting
- Avoid chronic inflammatory processes
- Problem of re-intervention with traditional techniques
- Ability of the vessel to perform positive remodeling
- Peripheral application: no longer crushing issue after absorption
- CT and MR (follow up) compatibility

Bioabsorbable Stent Programs

Company	Picture	Polymer/Drug	Features
Bioabsorbable Vascular Solutions (BVS) [Guidant]		All biodegradable polymers (PLLA) with everolimus	Self expanding and balloon expandable designs.
Igaki-Tamai	IGAKI-TAMAI ®STENT	PLLA; Transilast	Zig-zag design which is deployed using a heated balloon FIH Trial with 50 patients
Reva Medical		Poly (DTE carbonate) with iodine on the backbone to make the stent radio opaque	Design do not require heat to expand the stentby ratchet links
Biotronik		Mg Alloy	Balloon expanding stent with a delivery catheter

Igaki-Tamai PLLA Bioabsorbable Stent 4 Years Follow-up

- 63 lesions in 50 patients, 84 stents
- Non drug-eluting stent
- Four year follow-up data demonstrated no unusual findings

Long Term (4-year results)Death1/50 (2.0%)

 QMI
 1/50** (2.0%)

 CABG
 0

 Stent Thrombosis
 1/50** (2.0%)

 TLR
 9/50 (18.0%)

 ** = same patient

Hideo Tamai CCT 2004.

Behaves similar to bare metal stents

Igaki-Tamai PLLA Bioabsorbable Self expanding stent for the SFA

Material composition :PLLA(poly-L-1)Stent design :Zig zag helicaStrut thickness :0.009 inch (0.24)Radio-opaque markers :2 gold markerCurrently available diameters :5, 6, 7, 8 mmCurrently available length :36 mm

PLLA(poly-L-lactic acid) medical grade
Zig zag helical coil
0.009 inch (0.24 mm)
2 gold markers
5, 6, 7, 8 mm
36 mm

BVS Fully Bioabsorbable Drug Eluting Stent

Everolimus

BVS Bioabsorbable Stent Platform

Champion[™] Bioabsorbable Polymeric Drug Release

ML VISION[®] Balloon SDS

Poly Lactic Acid Bioabsorbable Polymer Poly Lactic Acid (PLA)

 PLA safely used in numerous medical applications since the 1960s

- Approx. 200 products made from PLA or co-polymer containing PLA
- Breaks down to lactic acid, a natural metabolite
- BVS stent has a tailored bioabsorption rate
- Fully bioabsorbed no drug left behind

Bioabsorbable Everolimus Eluting Coronary Stent Surface

Representative Photomicrographs (10x):Porcine Coronary Studies28 Day90 Day180 Day

Photos on file at Guidant. Pipeline DES products are currently in development at Guidant. Not available for sale.

BVS Intracoronary, *In-vivo* OCT Imaging

REVA Bioresorbable Stent

- Fully bioresorbable coronary stent system
- Integral bioresorbable drug-elution coating
- Paclitaxel-eluting

Slide & Lock Design

Design Enables Material

- Expansion based upon sliding, locking parts rather than material deformation
 - Facilitates the use of polymers

Enables Performance

- Negligible recoil
- Comparable radial strength & flexibility
- Equivalent sizing to current metal stents
- Standard balloon deployment

Close-up of Slide & Lock Mechanism

7.35 mm Bend Radius

Mg Alloy Bioabsorbable Stent

Metalic stents provide temporary scaffolding, that will *Disappear at 60-90 days a*fter deployment and may reduce restenosis! and will be compatible with cardiac imaging MRI or CT

Magnesium Based Alloys – Bioabsorbable Stents

In-vivo results animal trials

Quick endotheliasation and gradual absorption

Magnesium Stent: Visibility

Properties Biocompatibility

Reduced Proliferation of SMCs & ECs

Proliferation (BrdU) test of aterial hSMC and hEC in eluates. Heublein, et al., MHH

Structural Integrity

Testing after 3 days of implantation (minipig) Stent structure is completely intact

Micro CT and Light optical microscope images of Mg-stents 3 days after implantation

Histology & Morphometry

Neointima

EvG straining 56d Heublein, et al., MHH

Mean neointima in minipig coronary arteries adjusted for injury score and media reference (ANCOVA) Heublein, et al., MHH

Control and Mg – minipig coronary arteries; 8 weeks fu

Mg versus Control at 30 days

Mg

Conrtol L316

Neointimal Thickness of AMS Decreases in Minipig

n=33

AMS-Animal Study, 6 months follow up Histological Findings

Animal 1, RCA pos.2, (HE 25x magnification)

Animal 1, RCA pos.4, (HE 25x magnification)

Animal 26, RCA pos.2 (EvG 25x magnification)

Animal 15, LAD pos.2, (EvG 63x magnification)

Animal 15, RCA pos.2, (EvG 63x magnification)

Animal 1, RCA pos.4, (EvG 63x magnification)

PROGRESS AMS I Clinical Study

Preliminary Data Analysis

March 2006 Late Breaking Trials ACC

PROGRESS AMS – Overview

PROGRESS AMS – Hypothesis

The PROGRESS-AMS study designed to yield first data on the clinical safety and efficacy of the absorbable metal stent in the coronary artery application

Primary Hypothesis

To demonstrate feasibility and safety being in the range of currently available stent systems. With MACE rate after 4 months <30 % (max. 18 events)

PROGRESS AMS – Primary Endpoint

The primary endpoint of PROGRESS-AMS is

Major Adverse Cardiac Events (MACE) at 4 months **defined as**

Cardiac death Nonfatal myocardial infarction Ischemia driven TLR

Early primary endpoint as basis for starting subsequent clinical trials with Absorbable Metal Stent

PRELIMINARY RESULTS Demographics

Age, yrs	61.3 ± 9.5	
Males, % (n)	69.8	44/63
Diabetes, % (n)	17.4	11/63
Insulin Dependent, % (n)	4.8	3/63
Smoking History, % (n)	47.6	30/63
Hypercholesterolemia, % (n)	61.9	39/63
Hypertension , % (n)	65.1	41/63
Prior MI, % (n)	41.3	26/63
Unstable Angina, % (n)	9.5	6/63
Prior CVA, % (n)	1.6	1/63
Prior PCI, % (n)	23.8	15/63

PRELIMINARY RESULTS

	In Hospital Events		30-Day Events		4-Month Events	
	%	n	%	<u>Î</u>	%	n
MACE (Cardiac death, nonfatal MI, ischemia driven TLR)	0	0	0	0	23.8	15
Death	0	0	0	0	0	0
Q-wave MI (new pathol. Q-waves with CK or CK- MB elevated)	0	0	0	0	0	0
Non Q wave MI (CK 2 times above normal with CK-MB elevated)	0	0	0	0	0	0
Ischemic Driven TLR	0	0	0	0	23.8	15
TLR (Any)	0	0	0	0	38.1	24

Multislice CT (16 row) imaging of coronary arteries

Stent not visible, but optimal vessel rumen opacification

JPEG 5.84:1 Q=90 (lossy)

PRELIMINARY RESULTS – QCA Brief Summary

N = 60 lesions

Diameter Stenosis (%) Post	12.4 ± 5.6		
MLD POST, mm	$\textbf{2.46} \pm \textbf{0.37}$		

FOLLOW-UP QCA at 4 months Diameter Stenosis (%) Binary Restenosis (%) MLD, mm Late Loss, mm N = 57 lesions 48.2 \pm 17.2 31//57 (54.4%) 1.37 \pm 0.52 1.09 \pm 0.51

All TLR Preliminary Summary

Days Post Intervention

IVUS of Heavily Calcified RCA (Pre)

Lesion @ severe narrowing

Bonnier Waksman, Eindhoven May 21, 2004

Distal Reference

8.2 mm, 1 mm/div

IVUS at Follow-up

Conclusions

The FIM coronary study showed:

- Feasibility
- Safety: no death, no MI, no stent thrombosis
- The study met the primary endpoint < 30% of MACE
- The Absorbable Metal Stent (AMS):
- The AMS technology platform is proven
- Was successfully delivered to the lesion (100% device success)
- Was MRI / CT compatible
- Was absorbed as intended

Outlook - Drug eluting absorbable metal stent

Absorbable Metal Stent Platform:

- Fully absorbable platform
- Proven biocompatibility throughout the entire absorption process*
- Effective scaffolding properties**

Controlled Drug Eluting Stent Design:

- Precise drug release kinetic and direction
- Resorbable polymer with minimal tissue/polymer contact area
- Protected non-deforming reservoirs

* = Animal data available at Biotronik / ** = In vitro data available at Biotronik

Complete occlusion of the left pulmonary artery after de-banding and closure of the arterial duct with a clip (the device with three markers is for

calibration purposes)

Crossing the stenosis with a guide wire angiography revealed reperfusion

Peter Zartner, M. D., Pediatric CardiologyUniversity of Erlangen-Nuremberg, Germany

Implantation procedure of Mg Stent 3.0/10mm with a contrast filled balloon catheter

Peter Zartner, M. D., Pediatric CardiologyUniversity of Erlangen-Nuremberg, Germany

At one week follow up after Mg Stent the left lung was reperfused

Peter Zartner, M. D., Pediatric CardiologyUniversity of Erlangen-Nuremberg, Germany

FIM details Below The Knee

- 20 CLI patients (Rutherford 4-5) with BTK pathology
 - **1. Improving inflow limiting ATK lesions**
 - 2. Lekton Mg implant if short (max 30mm) BTK stenoses
 - Suboptimal angiographic result after PTA
 - –≥50% stenosis post-treatment
 - At the physician's discretion
 - flow-limiting dissection
 - threatened or acute closure
- Implants performed between December '03 January '04

Patient demographics

- Male
- Female
- Average age
- Clinical vascular status
 Rutherford Class IV
 Rutherford Class V

10 50% 10 50% 76 yrs (59 - 96) 9 45% 11 55%

Lesion description

- Average lesion length 11 mm (2 mm 20 mm)
- Average vessel diameter 2.7mm (2.5 mm 3 mm)

1

3

14

5%

15%

70%

- Average stenosis
 84 % (75% 95%)
- Dissection 0 0%
- Ulceration
- Thrombus
- Calcification

High Patency Rate Below The Knee

Primary Clinical Patency

Bosiers M, Dendermonde, Belgium; Peeters P, Bonheiden, Belgium

94.7% Limb Salvage After One Year•Limb Salvage Rate

Bosiers M, Dendermonde, Belgium; Peeters P, Bonheiden, Belgium

Bioabsorbable Stents Future Directions

Main challenges

- Rate of degradation
- Time to complete degradation
- Radial force and elimination of recoil
- Bioabsorbable DES

Future Applications

- Coronary, Workhorse stent Vulnerable Plaque
- Peripheral, SFA, tibial
- Pediatric pulmonary coarctation of aorta biliary, etc.