An Evidence-based Rationale for Successful CTO Recanalization

Overview of Indications, Technique and Clinical Outcomes for CTO Revascularization — a US-based Perspective

David E. Kandzari, MD, FACC, FSCAI

John B. Simpson Asst Professor of Interventional

Cardiology and Genomic Sciences

Duke Clinical Research Institute

Duke University Medical Center

Durham, North Carolina

david.kandzari@duke.edu

An Evidence-based Rationale for Successful CTO Recanalization

Relevant Disclosure

Research/grant support: Boston Scientific Corporation,

Cordis Corporation, Medtronic Vascular

Advisory board/consultant: Boston Scientific Corporation,

Medtronic Vascular

CTOs in Perspective

Despite novel technologies/DES, frequency of attempted CTOs has not changed over the past decade

- Technical/procedural challenges
- Uncertainty regarding which patients may benefit balanced by
- Concern for complications in patients who may not derive clinical benefit
- Misperceptions regarding viability, collateral flow

CTOs in a US Perspective

CTO present in 52% of patients with significant CAD (≥70% stenosis) 1990-2000, N=3,087

Christofferson et al. Am J Cardiol 2005

CTO Representation in DES Trials

Trial	N	% CTO
ARRIVE 1	2,586	1.8
ARRIVE 2	4,933	2.0
DIABETES	221	13.1
e-Cypher	14,316	2.9
WISDOM	903	7.0

BMS in CTOs: Procedural and Angiographic Outcomes

		Re	occlusi	on	R	estenos	is	Target	Vessel	Revasc
Trial	N	PTCA	Stent	P	PTCA	Stent	P	PTCA	Stent	P
Stenting in Chronic Coronary Occlusion (SICCO)	114	26%	16%	0.058	74%	32%	<0.01	42%	22%	0.025
Gruppo Italiano di Studi sulla Stent nelle Occlusioni coronariche (GISSOC)	110	34%	8%	0.004	68%	32%	0.0008	22%	5%	0.04
Mori et al. 1996	96	11%	7%	0.04	57%	28%	0.005	49%	28%	<0.05
Stent vs Percutaneous Angioplasty in Chronic Total Occlusion (SPACTO)	85	24%	3%	0.01	64%	32%	0.01	40%	25%	NS
Total Occlusion Study of Canada (TOSCA)	410	20%	11%	0.02	70%	55%	<0.01	15%	8%	0.03
Primary Stenting of Occluded Native Coronary Arteries (PRISON)	200	7.3%	8.2%	NS	33.3	21.9	0.14	10%	2.5%	0.002
Stents in Total Occlusion for Restenosis Prevention (STOP)	96	17%	8%	NS	71%	42%	0.032	42%	25%	NS

DES in CTO Revascularization

SES and PES Registries

Trial	N	ABR	TVR	MACE	TVR	MACE
			6 month	าร	1	year
SICTO, EuroPCR 2004	25	0	8.0	0	 	
E-Cypher, TCT2004	360		1.4*	3.1	 	
RESEARCH, JACC 2004	56	9.1	3.6	3.6	 	
Werner, JACC 2004	48	8.3			6.3	12.5
Nakamura, AJC 2005	60	2.0	3.0		3.0	
TRUE Registry, TCT2005	183	17.0 [†]	16.9 [†]	17.1 [†]	 	
Ge, EHJ 2005	122	9.2	9.0	16.4		

Data expressed as percentages. *Denotes TLR, †7-month outcomes

DES in CTO Revascularization

SES and PES Comparative Studies

Trial	N		ABR (%)		TVR (%)		MACE (%)	
	SES	PES	SES	PES	SES	PES	SES	PES
RESEARCH/ T- SEARCH, ACC 2004*	76	57	 - - -		2.6	3.6	 	
Asian Registry, TCT2005*	396	526	4.0	6.7	3.6	6.7	3.6	6.7
Suarez de Lezo, AHA 2005 ^{†,‡}	60	58	7.4	19.0	3.3	7.0	3.0	7.0

P=NS for all comparisons.

^{*1-}year outcomes, †8 month outcomes, ‡Angiographic f/u in only 48% of patients

200 CTO* Patients

- 2 centers
- Single Blinded Randomization
- Successful recanalization

Bx Velocity Stent

N=100

Cypher SES

N=100

Primary Endpoint: In-segment angiographic binary restenosis at 6 months

Antiplatelet Therapy: ASA/ Clopidogrel 6 months

	Bx Velocity	Cypher SES
	N=100	N=100
Diabetes mellitus (%)	16	10
LVEF>50% (%)	82	76
CTO> 3 mos (%)	44	46
TIMI 0 (%)	64	69
Lesion length (mm)	16.3	16.0
Stent length (mm)	28.9	31.9
Stent/patient	1.4	1.4

Procedural and Angiographic Outcomes

DES in CTO Revascularization

RESEARCH and T-SEARCH Registries

	Bare Metal	Sirolimus	Paclitaxel
	N=26	N=76	N=58
Occlusion length	13.0 ± 7.2	10.3 ± 5.9	11.2 ± 6.6
Reference diameter*	2.34 ± 0.43	2.35 ± 0.51	2.60 ± 0.49
Number of stents*	1.8 ± 0.8	2.2 ± 1.2	2.6 ± 1.3
Total stent length*	41.5 ± 23.3	48.8 ± 27.4	58.0 ± 32.8

Approaches to ChRonic Occlusions With Sirolimus Stents ACROSS-CypherTM/Total Occlusion Study of Coronary Arteries (TOSCA 4)

250 patients with *de novo* total coronary occlusions17 sites within North America Single-arm trial design

Clinical Follow-up 30 d 6 mo 12 mo 2 yr 3 yr 4 yr 5 yr

Angiographic Follow-up

Primary Endpoints: Angiographic restenosis at 6 months compared with TOSCA-1

Secondary Endpoints: Angiographic in-segment restenosis at 6 months; TVF,

MACE and TLR at 6 and 12 months; late loss at 6 months

Stent Sizes: Cordis Cypher[™] 2.5-3.5 mm x 8-33 mm

Pre- and post-dilatation specified with balloon length < stent length

Antiplatelet therapy for \geq 3 months

Innovation in CTO Revascularization

An Evolution in Technology and Strategy

Guidewire	Tapered tip: CROSS IT, Confianza, Miracle Steerable guidewire (Steer-It)/ catheter (Venture Optical coherence reflectometry (ILT) Penetration (Tornus) Vibrational angioplasty Magnetic Navigation (Stereotaxis)
Ablative	Excimer laser (Spectranetics) Ultrasound (Flowcardia) Radiofrequency ablation (ILT)
Mechanical	Blunt microdissection (Lumend) Fibrinolysis Demineralization, collagenase
Re-Entry	Percutaneous bypass Subintimal angioplasty
Post- Crossing	Drug eluting stents Distal protection

ACROSS Pilot

Predictors of Procedural Outcome, n=103

Characteristic	Failed	Successful	P value	
Multiple wires*				A
>1 wire	36% vs	. 5%	<0.001	Technical
>2 wires	53% vs	. 12%	<0.001	
Fluoro time, min	28 vs	. 21	0.04	
TIMI 0	24% vs	. 7%	0.054	
Support catheter	29% vs	. 14%	0.07	
Collaterals	23% vs	. 10%	0.12	
Female	29% vs	. 16%	0.17	Clinical/
Length >15mm	19% vs	. 10%	0.24	Angiographic
Ref <3mm	29% vs	. 17%	0.23	
Multivessel dz	23% vs	. 15%	0.30	

^{*}p<0.05 in multivariable analysis

Kandzari, Menown et al. TCT2003

Theoretical Rationale for CTO Revascularization

- Increase long-term survival
- Improve left ventricular function
- Electrical stability of myocardium and reduced predisposition to arrhythmic events
- Increased tolerance of future coronary occlusion events

Long-term Survival with Successful CTO Revascularization

Support for the Late Open Artery Hypothesis

Trial	Success (N)	Failure (N)	Follow-up Duration (years)	Mortality (%)		
				Success	Failure	P value
British Columbia Cardiac Registry ¹	1118	340	6	10.0	19.0	<0.001
Suero et al. ²	1491	514	10	26.0	35.0	0.001
TOAST- GISE ³	286	83	1	1.1	3.6	0.13
Aziz et al.4	377	166	2.4	2.5	7.3	0.049
Hoye et al.5	568	306	5	6.5	12.0	0.02

¹Ramanathan. TCT2003; ²Suero. JACC 2001; ³Olivari. JACC 2003; ⁴Aziz. TCT2005; ⁵Hoye Eur Heart J 2005

Multivariate Mortality Model

	Hazard Ratio	95% Confidence	P value
Failure	2.27	1.56 — 3.30	<0.0001
Age (per decade)	1.33	1.12 – 1.58	0.001
<i>EF</i> <50	2.33	1.58 – 3.43	<0.0001
Multivessel CAD	1.62	1.09 — 2.40	0.02
Prior CHF	1.73	1.10 – 2.76	0.02
ESRD	2.77	1.36 — 5.66	0.005
CVD	1.92	1.04 — 3.55	0.04
COPD	1.64	1.01 — 2.67	0.05
Diabetes	1.50	0.99 – 2.27	0.055

Myocardial Viability, Collateral Flow, and Regional Wall Motion

Cardiac MR Imaging

Duke Clinical Research Institute

44 pts, 58 CTO segments

Collateral flow *did not* predict:

- 1. Myocardial viability
- 2. Regional improvement following revascularization

Cardiac MR Imaging in CTO Revascularization

Influence of Revascularization on Wall Motion and LVEF

% Viable, Dysfunctional Segments in CTO Region

MR Imaging of Myocardial Viability and Performance in CTO Revascularization

CTO Revascularization: Myocardial Performance

MR Imaging to Identify Revascularization Candidates

Recovery of LV Function After CTO Recanalization

Most Improvement with Baseline LV Dysfunction

Recovery of LV Function After CTO Recanalization Predictors of Improvement in LV Function

Positive

- Baseline LV dysfunction
- Preserved microvasculature

No Effect

- Collateral development
- Prior MI
- Duration of occlusion
- Nonocclusive restenosis

Negative

Reocclusion

Evidence-based Rationale for CTO Revascularization Summary

- The 'Last Great Barrier to PCI Success'— most frequently encountered yet least treated lesion subset
- Development of novel technologies and technique implies higher success, reappraisal of predictors of failure, but still sparse evidence to support efficacy and indications
- Pathophysiologic rationale to support late open artery hypothesis

Evidence-based Rationale for CTO Revascularization Summary (Continued)

- Several trials with DES in CTO revascularization have demonstrated significant reductions in ABR and TLR
 - Several indirect comparisons with BMS historical controls
 - 1 RCT of DES vs. BMS
 -'Class Ib' recommendation
- Aside from \(\precedot ABR \), long term patency with DES may be associated with preservation of improved LV function
- Duration of dual antiplatelet therapy uncertain
 - Restenotic occlusions offset by thrombotic reocclusions with extensive stenting?

Evidence-based Rationale for CTO Revascularization Summary (Continued)

- Several trials with DES in CTO revascularization have demonstrated significant reductions in ABR and TLR
- Aside from \(\precedot ABR, \) long term patency with DES may be associated with preservation of improved LV function
- Duration of dual antiplatelet therapy uncertain
- Ongoing study to clarify role of novel technologies and technique, identify those who derive greatest clinical benefit

