
Left Main TAXUS Pilot Study. Mid-term follow-up

M.SILVESTRI, T.LEFEVRE, O.DARREMONT

On behalf the Left Main TAXUS Pilot Study Investigators.

Final results of the French Registry of Left Main Coronary Treatment

Final results of the French Registry of Left Main Coronary Treatment

One-year Outcome

 Patients (n)
 192
 230

 Poor surgical candidates (%)
 44.2
 14.3

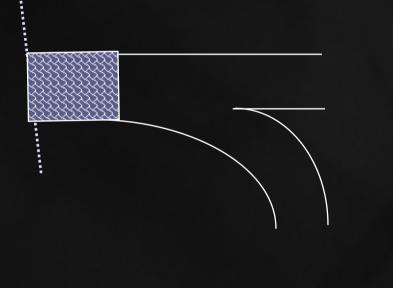
 Follow-up obtained (%)
 96.8
 94.

 MI (%)
 1.6
 6.9

 Stroke (%)
 0
 2.3

 Death (%)
 9.6
 11.4

 TVR left main (%)
 13.4
 3.7


 Total Reintervention (%)
 28.5
 3.7

Stent	CABG	p value	
192	230	11 - 1911	
44.2	14.3	<0.001	
96.8 94.8		NS	
1.6	6.9	0.017	
0	2.3	0.094	
9.6	11.4	NS	
13.4	3.7	0.001	
28.5	3.7	<0.001	

Design of the Study

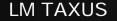
- ✓ May 2003-June 2005
- ✓ Feasibility and Safety Study
- ✓ 4 experienced centers
- ✓ Consecutive patients with de novo lesions
- ✓ Informed consent
- ✓ Standardized approach
- ✓ Plavix + Aspirin ≥ 6 months

French Left Main Taxus Pilot Study Strategy and Lesion Type

Ostial Lesion

Mid shaft Lesion

French Left Main Taxus Pilot Study Strategy and Lesion Type*

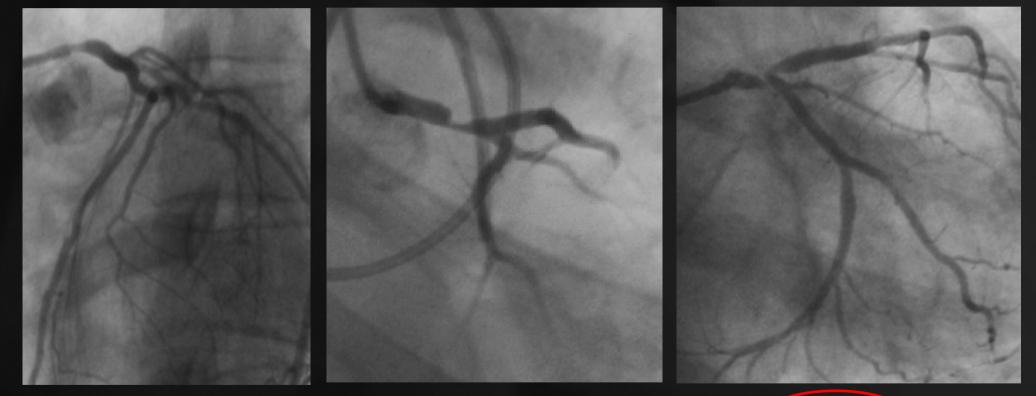

French Left Main Taxus Pilot Study Design of the Study (cont.) Follow-up

Angiographic recommended at 6 months
 Clinical at 1 and 6-8 months, 1, 2, 3 years

Exclusion criteria

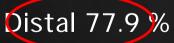
- ✓ Acute MI (ST and non ST)
- ✓ Cardiogenic shock

May 2003 - June 2005: 291 Patients included


Clinical Characteristics

Patients (n) 291 68.8<u>+</u>11.4 Age (years) Male gender (%) 76.5 Risk factors (%) 28.7 Diabetes 63.9 Hypertension Hypercholesterolemia 62.6 Smoker 43.3 19.4 Family history

Clinical Characteristics (cont.)


Previous MI (%) Previous PCI (%) Previous CABG (%) Unstable angina (%) Recent MI (%) 3 vessel disease (%) EF (%) Additive Euroscore Estimated mortality (%) 11.5 20.1 1.0 37.4 6.6 25.8 60<u>+</u>13 4.8<u>+</u>3.4 6.6+10.8

French Left Main Taxus Pilot Study Left Main Lesion Location

Ostial-proximal 29.4 %

Mid-shaft 11.4 %

French Left Main Taxus Pilot Study Procedural Data

Gp2b3a inhibitors (%) Radial approach (%) Guiding size 6 Fr (%) 7 Fr (%) I ABP (%) Other treated vessel (%)

Other treated vessels (n) Total stent length (mm) Procedure (min.) Contrast media (ml)

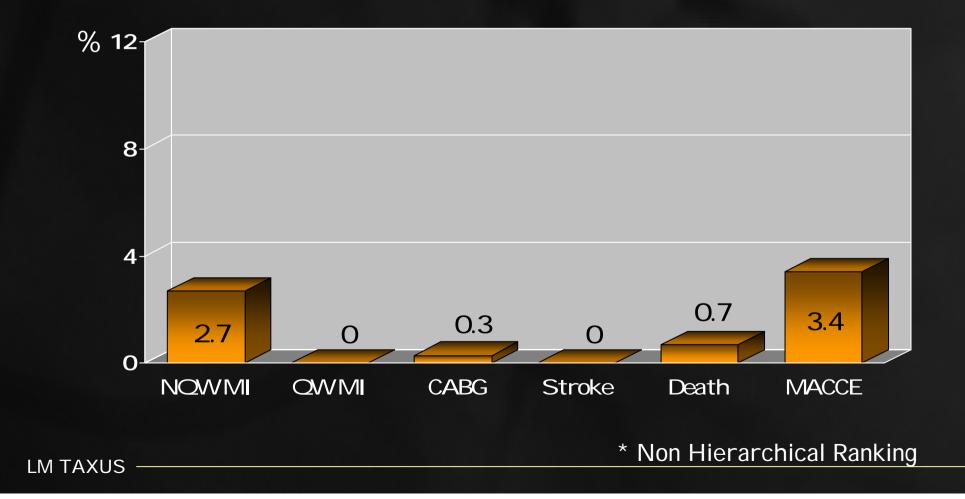
4.2 57.4 85.8 12.8 4.5 78.4 1.35+0.93 53+23 58.3+31.2 250+140

QCA analysis pre-PCI and Procedural Data

Left main reference (mm) LAD reference (mm) Circumflex reference (mm) % stenosis left main (%) Left main stent (n) Left main stent length (mm) Left main stent diameter (mm) Final balloon diameter (mm) 3.64 ± 0.50 3.23 ± 0.56 2.89 ± 0.44 69.8 ± 11.9 1.08 ± 0.30 18.1 ± 6.3 3.43 ± 0.17 3.63 ± 0.32

QCA Analysis post procedure

Left main reference (mm) Left main MLD (mm) Left main residual stenosis (%) Circ. reference (mm) Circ. MLD (mm) Circ. residual stenosis (%) Angiographic Success (%) 3.83<u>+</u>0.43 3.46<u>+</u>0.47 6.7<u>+</u>7.5 3.22<u>+</u>0.55 2.83<u>+</u>0.50 8.4<u>+</u>10.6 99.6

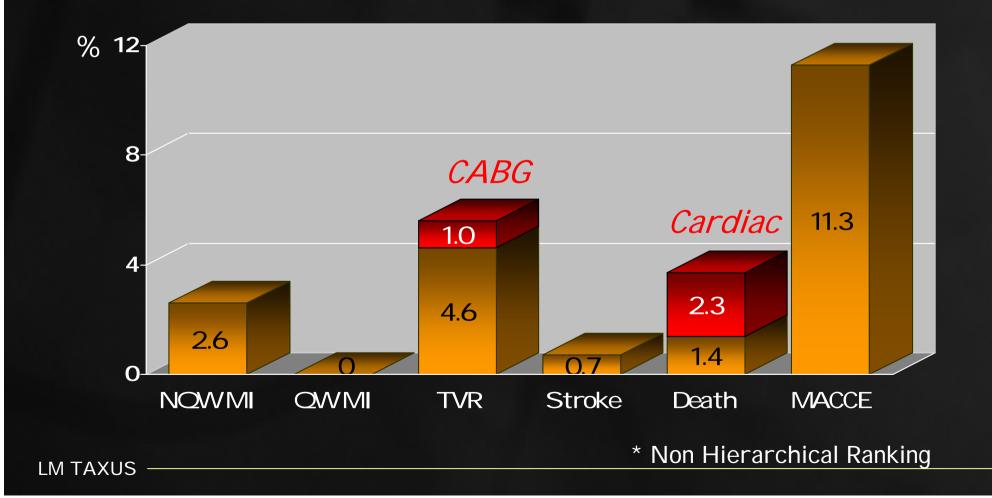

8.0

0.5

Distal left main in 77.9% of cases

Provisional SB T-stenting (%) 91.5 Systematic T stenting (%) V Stenting (%) Side branch stented (%) 40.6 Side branch stent length (mm) 13.8+5.5 3.04+0.34 Side branch stent diameter (mm) 96.8 Final Kissing balloon (%)

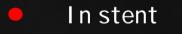
French Left Main Taxus Pilot Study In-hospital Outcome* (n=291/291, 4.6+3.6 days)


French Left Main Taxus Pilot Study 6-12 months F-Up (287/291: 98%, 9.1+1.9 months)

% **12**₇ 8 11.3 4 5.6 3.8 2.6 0 NOWM QWM **TVR** MACCE Stroke Death

LM TAXUS

* Non Hierarchical Ranking


French Left Main Taxus Pilot Study 6-12 months F-Up (287/291: 98%, 9.1+1.9 months)

French Left Main Taxus Pilot Study Angiographic F-Up (178/277: 64.3%)

Delay (months) LM restenosis (%)

6.9<u>+</u>2.6 9.6*

Not in stent

* % of patients with angiographic follow-up

Cause of death (n=11/287: 3.8%)

Cardiac

\checkmark	AT during the procedure	1
\checkmark	Severe groin hematoma, day 2	1
\checkmark	Sudden death, day 8	1
\checkmark	Pulmonary oedema during dialysis, 2 months	1
\checkmark	Sudden death, 8 weeks and 11 weeks	2
\checkmark	LAD restenosis, reintervention	1
No	on cardiac	

- ✓ Pulmonary infection, 4 months
- ✓ Hemorrhage during dialysis, 2 months
- ✓ Stroke at 5 months
- \checkmark Cancer at 7 months

Predictors of Death at 6-12 Months

	Death	No death	p value
Patients (n)	11	280	-
Age (years)	72.6 <u>+</u> 12.6	68.6 <u>+</u> 11.4	0.25
Euroscore	6.9 <u>+</u> 2.9	4.7 <u>+</u> 3.4	0.03
Diabetes (%)	72.7	26.8	0.001
Dialysis (%)	27.3	0.8	0.001
Ejection fraction (%)	57 <u>+</u> 10	61 <u>+</u> 13	NS
3 Vessel disease (%)	44.4	25.5	NS
Bifurcation lesion (%)	90.9	77.5	NS
Two stents in distal LM (%)	50.0	40.6	NS

Conclusion

Mid term results of this "real world" multicenter pilot study with the TAXUS stent for LM PCI using a standardized technical approach are encouraging and certainly challenging CABG.

However there is still a room for improvement in stent design and drug delivery approach.