Lower Extremity Revascularization: A data-driven analysis of SFA options

William A. Gray MD
Director of Endovascular Services
Cardiovascular Research Foundation
Columbia University Medical Center

Is claudication an acceptable endpoint?

- Lifestyle restrictions are variable but extremely limiting in many cases
- Multiple studies have clearly demonstrated a benefit in all cause and cardiovascular survival in patients who exercise regularly
- Limitations on exercise based on established atherosclerotic disease is contrary to established cardiovascular recommendations for secondary risk factor modification and relegates the patient to continued progression of atherosclerosis

Lower-extremity: therapeutics

Indications for revascularization are evolving...

	asymptomatic	77
1-level	claudication	
0.1	■ rest-pain	///
2-level	■ limb_threat	

TASC classification of SFA disease

Type A Endovascular treatment of choice

- · Up to 3 cm in length
- · Not at origin of SFA or distal popliteal

Type B Currently endovascular treatment is more often used but insufficient evidence for recommendation

- Single stenosis or occlusion 3-5 cm, not involving distal popliteal artery
- · Heavily calcified stenosis up to 3 cm
- · Multiple lesions < 3cm, stenosis or occlusion
- Single or multiple lesions in absence of continuous runoff

Type C Currently surgical treatment is more often used but insufficient evidence for recommendation

- . Single stenosis or occlusion longer than 5 cm
- . Multiple stenosis or occlusion each 3-5 cm

Type D Surgical treatment of choice

 Single CFA or SFA occlusions or complete popliteal and proximal trifurcation occlusions

TASC classification of SFA disease

Type A Endovascular treatment of choice

- . Up to 3 cm in length
- Not at origin of SFA or distal popMeal

Type B Currently endovascular treatment is more often used but insufficient evidence for recommendation

- Single stenosis or occlusion 3-5 cm. not involving distal popilitial artery.
- Heavily calcified stanosis up to 3-cm.
- . Multiple tesions < 3cm; manosis or coduluon
- Single or multiple leasons in absence of continuous nunoff

Type C Currently surgical treatment is more often used but insufficient evidence for recommendation

- . Single stenosis or occlusion longer than 5 cm
- · Multiple stenosis or occlusion each 3-5 cm

Type D Surgical treatment of choice

 Single CFA or SFA occlusions or complete popliteal and proximal trifurcation occlusions

SFA disease: surgical options

- Bypass outcomes dependent on:
 - Inflow
 - Outflow
 - Conduit used
- Recovery usually requires several weeks
- Peri-operative complications (death (4%), medical, graft, wound, etc) can be significant
- Lymphedema
- Use of saphenous venous conduits can limit future CABG options
- Collateral circulation (geniculates/surals) may be interrupted during dissection, and may increase the possibility of future limb threat with graft failure

SFA disease: surgical options

Durability of fem-pop bypass^{1,2}

	1- year	3-year	5-year
Above the knee-vein	X	Х	75%
Above the knee-graft	74%	56%	50%
Below the knee-vein	83%	75%	67%
Below the knee-graft	Х	Х	33%

After five years, 38% of patients died of unrelated causes1

1. J Vasc Surg. 2003 Jan; 37(1):149-55 2. Am J Surg. 1997 Aug; 174(2):169-72

SFA disease: endovascular options

- PTA
- Stenting
 - Bare metal*
 - DES*
 - Covered stents
 - Hemobahn
 - aSpire
- Brachytherapy
- Cryotherapy
- Atherectomy
- Extravascular bypass

*randomized data

SFA: mechanical challenges

Extension / Contraction

Flexion

Torsion

Compression

SFA: dynamics in motion bend/kink zone A compress slight curve zone B fixed zone C bend/kink zone D COLUMBIA UNIVERSITY MEDICAL CENTER CARDIOVASCULAR RESEARCH FOUNDATION

SFA: Hostile territory Distal SFA-popliteal during knee flexion

SFA therapeutic decisions: problems with data-driven approach

- Data-analysis challenges
- Lack of available randomized multicenter data

SFA therapy: challenges in data analysis

- Understanding the factors potentially confounding factors in restenosis outcomes assessment
- Device platform differences
- Data collection

Coronary restenosis profiles

Challenges: Confounding factors

Understanding the factors potentially confounding factors in restenosis outcomes assessment:

- Length of disease
- Occlusion vs. stenosis
- Inflow/Run-off status
- Diabetic status
- Tobacco status
- Vessel diameter
- Atheroma volume

Challenges: Device platform is not "inert"

- Platform performance differences
 - Nitinol
 - Slotted tube vs. spiral
 - Woven SS
- Rate of stent fracture in self-expanding platforms
 - Clinical relevance
 - Effects on restenosis
 - Distal effects
- Possible confounding effects of adjunctive therapy
 - Debulking

FESTO: Effects of nitinol stent fracture

Differential stent effects?

Challenges: Data collection

- Data collection
 - Endpoint definitions of success
 - Anatomic
 - Binary restenosis (>50%)
 - Discrete vs. diffuse vs. volume definitions
 - Clinical
 - Walking distance
 - ABI
 - Quantifying (and understanding) restenosis
 - Angiographic
 - Duplex
 - Intravascular ultrasound
 - Time course defining durability of intervention
 - Consistent and standardized reporting structure

Focal vs. discrete restenosis: do they count the same?

Legacy stent results in SFA lesions

	Mean lesion length	Stent	1º patency (1 year)	2º patency (1 year)
White et al 1995	3.7 cm	Wallstent and Strecker	75%	89%
Marin et al 1995	?	Wallstent	61%	84%
Gray et al 1997	16.5 cm	Wallstent and Palmaz	22%	46%
Conroy et al 2000	13.5 cm	Wallstent	47%	79%
Gordon et al 2001	14.4 cm	Wallstent	55%	82%

Legacy stent results in SFA lesions

	Mean lesion length	Stent	1º patency (1 year)	2º patency (1 year)
White et al 1995	3.7 cm	Wallstent and Strecker	75%	89%
Marin et al 1995	?	Wallstent	61%	84%
Gray et al 1997	16.5 cm	Wallstent and Palmaz	22%	46%
Conroy et al 2000	13.5 cm	Wallstent	47%	79%
Gordon et al 2001	14.4 cm	Wallstent	55%	82%

Biamino retrospective

FESTO: Differential stent patency

FESTO: Stent fracture and patency

FESTO: Fracture and patency by stent

Impact of stent fracture on stent patency

SIROCCO Outcomes

9-Month Duplex Ultrasound

Sirolimus		SMART Control	P value
Lesion lengt	(n=26) h: 8.6 cm	(n=23) 7.6 cm	
In-stent			
Binary restenosis	2 (7.7%)	2 (8.7%)	1.00
Occlusion	0	1 (4.3%)	0.47
Total	2 (7.7%)	3 (13.0%)	0.66
In-Lesion			
Binary restenosis	6 (23.1%)	4 (17.4%)	0.73
Occlusion	0	1 (4.3 %)	0.47
Total	6 (23.1%)	5 (21.7%)	1.00

BLASTER Efficacy Results

Parameter	SMART with Abciximab	SMART without Abciximab	All Patients
Duplex Primary Restenosis	22.0%	13%	17%
9 Month Assisted Primary Patency	96.0%	100.0%	97.6%

- ~ 100 patients
- Stenosis/occlusion (50%) length: 11cm-12cm
- Length of stented segment: 17.8 cm
- 98% Rx'd with <3 stents

Nitinol revolution?

Possible objections to SFA stenting

- Collateral compromise
- Acute thrombosis
- Durability/Stent fracture
- In-stent restenosis management
- Follow-up surgical option issues

SFA disease: covered stents

- Hemobahn (WL Gore) randomized data
 - 28 patients randomized to PTA or ePTFE covered stent
 - Baseline characteristics were similar between groups including ABI's, lesion length (focal-to-moderate), run-off status etc.
 - Results:
 - Post-procedure ABI's better in the stent group
 - 6 month patency 93% in ePTFE vs. 42% in PTA
 - 2 year patency 87% vs. 25%
 - *Transient thigh pain requiring meds in 20% of ePTFE group, with one thrombotic complication

Conclusion

- Analysis of data is encumbered by
 - the lack of Level 1 data
 - the lack of uniform reporting, including accounting for confounding differences in lesion/patient characteristics, and standard time interval defining success, etc
 - small sample sizes
 - possible differences in stent performance and durability
- An "endovascular first" approach is an imperfect, but viable option
- That said, there appear to be enough broadly improving restenosis data in SFA intervention to support this change in the approach to SFA disease (and its ongoing, in-depth study)