Percutaneous coronary intervention in diabetes mellitus

Angela Hoye Interventional Cardiologist Kingston-upon-Hull, UK

No conflicts of interest to disclose

Diabetes mellitus: prevalence

The prevalence is increasing:

- within the next 25 years, the worldwide prevalence is estimated to double

Wild et al Diabetes Care 2004;27:1047-53

Diabetes mellitus

- Cardiovascular disease is responsible for >75% deaths in diabetic patients
- Diabetic patients with clinical evidence of coronary disease have a mortality rate at 8 yrs of ~50%
- Men with DM will lose 11.6 life-years, women 14.3 life-years

Impaired glucose tolerance and DM

- Atherogenic dyslipidemia high triglyceride levels, small dense LDL particles, low HDL cholesterol
- Impaired endothelial function decreased nitric oxide, increased endothelin-1 and angiotensin II increases vascular tone and smooth muscle cell migration and growth
- Prothrombotic milieu increased platelet activity, increased number of circulating platelets, increased levels of fibrinogen and factor VII, higher levels of plasminogen activator inhibitor-1, lower levels of endogenous fibrinolytic activity and antithrombin III

Complex patient group

- Older
- Hypertension
- High cholesterol
- Obesity
- Peripheral vascular disease
- Cerebrovascular disease
- Retinopathy
- Renal dysfunction increased risk of contrast nephropathy

Complex coronary disease

- Multivessel disease
- Diffuse disease
- Small vessel disease
- Distal disease
- Calcification
- Impaired left ventricular function

Prognosis of patients with DM and coronary artery disease

5-year survival curves for 3320 patients (24% diabetic) treated at Duke Medical Center, for multivessel disease

Historical data

- Limited due to a lack of specific randomised studies – subgroup analysis of larger studies
- Single centre experiences real world

The preferred strategy - CABG

Niles et al JACC 2001;37:1008-15

MACE following PCI in diabetic patients

· ARTS I:*

- Diabetes increases restenosis
- Meta-analysis of 6236 patients** following coronary stenting (1,166 with DM), restenosis occurred in 37% versus 26%, p<0.01
- Increased rates if on insulin therapy

Prognosis of patients with DM and coronary artery disease

- Long-term survival rates of 604 diabetic patients following successful balloon angioplasty
- Stratified according to the results of follow-up angiography at 6-months

Glycemic control and target vessel revascularization

Diabetic population of SIRIUS

26% total population

Diabetic population of TAXUS IV

32% total population

DIABETes and sirolimus Eluting Stent trial

 Prospective multicenter randomized study of the SES versus BMS implantation in diabetic patients

 Primary endpoint was in-segment late lumen loss at 9-month follow-up

DIABETES trial

DIABETES trial

	SES Lesion n=111	BMS Lesion n=110
Lesion length (mm)	14.6 ± 8	15.3 ± 8
RVD (mm)	$\textbf{2.33} \pm \textbf{0.6}$	$\textbf{2.35} \pm \textbf{0.6}$
B2/C (%)	79	81
Calcification (%)	43	36
Chronic total occlusion (%)	13	14
Stent diameter (mm)	2.8 ± 0.3	$3.0 \pm 0.4 \ *p=0.0001$
Stent length (mm)	22 ± 10	23 ± 13

DIABETES trial

	SES	BMS
	n=80	n=80
Insulin	32%	34%
Non-insulin	68%	66%
Glycosylated hemoglobin A _{1C} (%)	7.4 ± 1.5	$\textbf{7.3} \pm \textbf{1.4}$
IIb/IIIa inhibitor use	64	54
Multivessel disease	61%	69%

- 66% vessel smaller than 2.5mm
- 43% lesion longer than 20mm
- 32% had a creatinine clearance <60mL/min
- 51% poor glycemic control with a glycosylated HbA_{1c} >7%

DIABETES trial: in-segment late loss at 9-months

DIABETES trial: in-segment restenosis rate at 9-months

DIABETES trial: clinical outcomes at 9-months

	SES	BMS	p value
	n=80	n=80	
Death, n (%)	1 (1.3)	2 (2.5)	ns
Q-MI, n (%)	1 (1.3)	0	ns
Non-Q MI, n (%)	1 (1.3)	5 (6.3)	ns
TLR, n (%)	5 (6.3)	25 (31.3)	<0.0001
MACE, n (%)	8 (10.0)	29 (36.3)	<0.0001

PORTO Trial

 Multicenter Portugese study of SES in small (≤ 2.50mm) native coronary arteries of diabetic (PORTO I) and non-diabetic (PORTO II) patients

Lesion length ≤33mm

 Primary endpoint: in-stent Late Lumen Loss at 6-month angiographic follow-up

Independent core lab

PORTO Trial - Flow chart

Between Jan 03 and Sep 04

135 (88%)

PORTO Trial - PCI data

	Total	PORTO I	PORTO II	
		(diabetic)	(non- diabetic)	
PCI for 2-3 target vessels	8.4%	12.5% *	5.2%	
IIb/IIIa use	19.7%	23.3%	16.9%	
No. Of SES	347	170	177	
Only 1 stent used	93.2%	91.6%	94.7%	
Stents 2.25mm	29.7%	38.2% ***	21.5%	
Stents ≥ 23mm	25.6%	24.7%	26.5%	
* n < 0.05 *** n < 0.001				

PORTO Trial – QCA data

Pre PCI

Total n=262

PORTO I

(diabetic) n=121

PORTO II

(non-diabetic) n=141

Reference Vessel Diameter (mm)

2.09±0.32 2.04±0.31 *

2.13±0.34

Lesion length (mm)

11.08±6.0

11.16±6.1

11.01±5.9

Diameter stenosis (%)

58.9±11.7

59.3±11.4

58.6±12.0

MLD (mm)

0.86±0.28

0.83±0.27

 0.88 ± 0.28

PORTO Trial In-stent Late Loss

PORTO Trial In-stent Binary Restenosis

PORTO Trial – clinical adverse events at 6 months

	Total	PORTO I (diabetic)	PORTO II (non-diabetic)
Death (%)	1.8	3.3	0.6
Cardiac Death (%)	1.1	1.7	0.6
Non-fatal AMI (%)	1.1	1.7*	0.6**
TLR (%)	8.0	1.7*	0
TVR (%)	1.1	2.5	0
MACE (%)	2.9	5.0	1.3
Stent Thrombosis (%)	0.7	0.8*	0.6**

^{*} SAT, day 9, after anti-platelet therapy discontinuation

^{**} Late, day 44, on anti-platelet therapy

Diabetes mellitus in the era of DES in the "real world"

- DM remains an independent predictor of adverse events:
 - Rotterdam Registries (RESEARCH and T-SEARCH)
 - –Milan registry*
 - -German registry
 - –Multicenter PCI Database Registry of Korea
 - –e-Cypher*

Use of abciximab in diabetics

- 1,462 diabetic patients from EPIC, EPILOG, and EPISTENT
- Mortality rate was increased in those with a significant procedural release of CK

e-Cypher: survival-free of MACE

3171 diabetics (86%FU) versus 7988 non-diabetics (87%FU)

Guagliumi: presented at TCT 2004

e-Cypher: survival-free of adverse events with respect to type of therapy for diabetes

MACE

Guagliumi: presented at TCT 2004

Multicenter PCI Database Registry of Korea

- 211 patients with DM (25% total population)
- Restenosis in 15% non-diabetic versus 21% diabetic (p<0.001)
- Multivariate predictors of restenosis in the diabetics:
 - Current smoking
 - High CRP
 - Longer stent length
 - Smaller vessel diameter
 - Minimal lumen diameter
 - Use of PES

Which DES? ISAR-DIABETES

- Randomised controlled trial of 250 patients with DM and coronary disease to therapy with either SES or PES
- Primary endpoint was in-segment late loss
- Secondary endpoints of in-segment restenosis, and TLR at 9-months
- Aspirin indefinitely, clopidogrel 75mg for at least 6 months, abciximab in those with ACS

ISAR-DIABETES

	PES	SES
	n=125	n=125
Diabetes therapy: diet alone	19	19
oral agents	52	44
insulin	29	37
Glycosylated hemoglobin (%)	7.4 ± 1.6	7.3 \pm 1.1
B2/C lesions (%)	74	82
RVD (mm)	2.75 \pm	$\textbf{2.70} \pm \textbf{0.50}$
Lesion length (mm)	12.4.567.7	$\textbf{13.8} \pm \textbf{7.6}$
Length of stented segment (mm)	$\textbf{22.1} \pm \textbf{9.3}$	$\textbf{23.8} \pm \textbf{10.2}$

Dibra et al NEJM 2005;353:663-70

ISAR-DIABETES: in-segment late loss

ISAR-DIABETES: clinical outcomes at 9-months

	PES n=125	SES n=125	p value
Death, n (%)	6 (4.3)	4 (3.2)	0.52
AMI, n (%)	3 (2.4)	5 (4.0)	0.72
TLR, n (%)	15 (12.0)	8 (6.4)	0.13

Dibra et al NEJM 2005;353:663-70

Multivessel disease: ARTS II

- Single arm, multicenter trial
- 607 patients in 45 centers from 19 countries

Serruys et al EuroInterv.2005;2:147-156

ARTS II - Patient Population

- Patients between 18 and 80 years with MVD
- Stable, unstable angina or silent ischemia
- One lesion located in LAD
- Patients were stratified by clinical site in order to ensure inclusion of at least 1/3 3-vessel disease and 2/3 2-vessel disease to obtain a population comparable to ARTS I (2.7 lesions / patients)
- No previous PCI, CABG or stroke
- No MI within the preceeding week

ARTS II - Fauletti Fopulation

- Patients between 18 and 80 years with MVD
- Stable, unstable angina or silent ischemia
- One lesion located in LAD
- Patients were stratified by clinical site in order to ensure inclusion of at least 1/3 3-vessel disease and 2/3 2-vessel disease to obtain a population comparable to ARTS I (2.7 lesions / patients)
- No previous PCI, CABG or stroke
- No MI within the preceeding week

ARTS II – Diabetic population

Patient characteristics (main differences)	ARTS II 159-patients 568-lesions	ARTS I (CABG) 96-patients 290-lesions	ARTS I (PCI) 112-patients 309-lesions
Male (%)	77	79	73
Age (years)	65	63	63
Hypertension	80	56	64
Hypercholesterolemia	74	49	55
Lesion characteristics			
Lesion length > 20mm	(%) 15	6	6
Calcified lesion (%)	33	15	13
Type C lesion	17	7	7
# of lesions > 50%DS	3.6 ± 1.3	3.0 ± 1.1	2.9 ± 1.2
# of treated lesions	3.2 ± 1.2	2.8 ± 0.8	2.5 ± 1.1

ARTS II – Diabetic population

Patient characteristics (main differences)	ARTS I 159-patie 568-lesio	nts	ARTS I (CABG) 96-patients 290-lesions	ARTS I (PCI) 112-patients 309-lesions
Male (%)	77		79	73
Age (years)	65	1	63	63
Hypertension	80	1	56	64
Hypercholesterolemia	74	1	49	55
Lesion characteristics				
Lesion length > 20mm	(%) 15	1	6	6
Calcified lesion (%)	33	1	15	13
Type C lesion	17	1	7	7
# of lesions > 50%DS	3.6 ± 1	3/	3.0 ± 1.1	2.9 ± 1.2
# of treated lesions	3.2 ± 1.	2/	2.8 ± 0.8	2.5 ± 1.1

ARTS II – Diabetic population

Hierarchical MACCE upto 1 year	ARTS II N=159	ARTS I (CABG) N=96	ARTS I (PCI) N=112
Death	2.5%	3.1%	6.3%
CVA	0.0%	5.2%	1.8%
MI	0.6%	2.1%	6.3%
Death/CVA/MI	3.1%	10.4%	14.1%
Revascularization	12.6%	4.1%	22.3%
(re) CABG	3.1%	1.0%	8.0%
(re) PCI	9.4%	3.1%	14.3%
Any MACCE	15.7%	14.6%	36.6%
		nsp<0.0	001

No significant difference in MACCE (p=0.86) between ARTS II and ARTS I (CABG)

Significant difference in MACCE (p=<0.001) between ARTS II and ARTS I (PCI)

ARTS I versus ARTS II: MACCEfree survival in the diabetics

ARTS I versus ARTS II: MACCEfree survival in the diabetics

ARTS I versus ARTS II: MACCEfree survival in the diabetics

Case Example

- 57-year old man, bus driver
- 1-year history of stable angina
- Tablet controlled diabetic (for 2 years)
- Ex-smoker
- Hypercholesterolemia
- Very early abnormal ETT
- Angiography demonstrated good LV function, 3 vessel coronary disease

Case example

The future

- BARI 2D (sponsored by NHLBI): revascularization versus no revascularization in insulin versus no insulin-treated diabetic patients with mild / moderate symptoms
- FREEDOM (sponsored by NHLBI): SES plus abciximab versus CABG in multivessel disease
- CARDia: DES versus CABG in multivessel or complex single vessel disease

BARI II-D Trial: Completed

*Aggressive medical therapy in both arms

Target HbA_{lc} <7.5%

Primary endpoint – 5-Year Mortality

NHLBI sponsored FREEDOM trial

DES versus CABG in diabetics with multivessel disease

PI: Valentin Fuster

Eligibility: DM patients with ≥2 vessel disease suitable for stent or surgery

Exclude: AMI and / or cardiogenic shock

................

2400 patients randomised 1:1

DES Cypher or Taxus with abciximab

CABG

Primary endpoint: 3 yr composite of death, AMI, or stroke

Medical therapy: $HbA_{1c} < 7.0\%$

target BP <130/80mmHg

target LDL <70mg/dL

All patients to receive both aspirin and clopidogrel for 1 year

The CARDia Trial

- Multi-centre, randomised, prospective study of revascularization in diabetics in the UK
- Multivessel disease or complex single vessel disease
- DES (with abciximab) versus CABG (use of LIMA, on or off pump)
- Evaluation of 600 patients (so far recruited approx 70%)
- Primary endpoint: composite of death, AMI, or stroke at 1 year

Conclusions

- Outcomes in diabetic patients are worse whether treated by PCI or CABG compared with non-diabetics
 - More complex disease
 - Less complete revascularization
 - Increased lesion progression
- DES are effective in DM, and reduce restenosis and TLR compared with BMS
- But DM is still a predictor of MACE and TLR
- Insulin-treated diabetics may have a poorer outcome

Conclusions: importance of optimal medical therapy

Prothrombotic

- optimal anti-platelet therapy

(high dose clopidogrel pre-loading - ISAR-SWEET)

- - Renal dysfunction prehydrate ± N-acetylcysteine
 - ACE-inhibitor especially in the presence of proteinuria

Hypertension

- aim for bp <130/80
- **High cholesterol**
- aggressive statin therapy
 - <100mg/dL >40mg/dL Triglycerides <150mg/dL

Obesity

- exercise programme & diet
- Glycemic control
- HbA1_c <7.0%