

Clinical Applications of FFR

- Functional assessment will give valuable information in following situations;
 - Intermediate lesions
 - Optimizing PCI results
 - Complex anatomy
 - Identification of the culprit lesion in multiple lesions and in multivessel disease
 - Bifurcation lesions

'Pressure Wire in SNUH

• 2003 Jun - 2006 Dec

FFR measurement: 445 lesions

How to treat bifurcation lesions?

Bifurcation Lesion & Intervention Problems to operators

Lesion itself is complex !

Classification is complex !

Too many treatment modalities !

Still a challenging lesion subset even in the era of DES Complex procedure, Low procedural success, High events

Too many strategies.....

Bifurcation Lesions

Systemic 2 stenting vs. Provisional side branch intervention in DES era

		Ctort	TLR rate	
Author	n	Stent	2 stents	1 stent
Colombo, Circulation 2004	85	Cypher	9.5%	4.5%
Ge, AJC 2005	127	Cypher	8.8%	5.4%
Pen, <i>AHJ 2004</i>	91	Cypher	5%	2%
Steigen, Circulation 2006	413	Cypher	2%	1.4%

The criteria for SB intervention

Author	Ν	SB intervention criteria
Colombo, Circulation 2004	43	> 50% stenosis
Pen, <i>AHJ 2004</i>	47	> 50% stenosis
Steigen, Circulation 2007	207	< TIMI 3 flow

Provisional side branch intervention

- Which needs additional procedures?
- How to treat?

Side branch balloon size?

Goal of treatment?

Criteria for SB treatment success at follow-up angiogram?

FFR in Jailed side branches

- Easily obtained, Stenosis specific, Simple(< $0.75 \rightarrow$ ischemia)
- Reflects both degree of stenosis and myocardial territory

Pd: distal pressure by pressure wire

To Treat? Or Not?

Subjects

Inclusion criteria

De novo, bifurcation lesion

Main branches

- Successful stent implantation
- No significant stenosis proximal to the stented segment

Jailed side branches

- Stenosis > 50%
- Diameter > 2 mm
- Lesion length < 10 mm
- Side branch length > 30 mm

Exclusion criteria

- Side branch slow flow after stenting
- Left main disease, CTO lesions
- Infarct related artery, thrombus
- Diffuse or distal lesion at SB
- RWMA at stented segments
- Myocardial disease, valvular disease
- Renal insufficiency

RADI pressure wire: Successful FFR measurement: 94/97 lesions (97%)

Characteristics of lesions (n=94)

Bifurcation type (ICPS classification)

Type 1	55 (58%)
Type 2	12 (13%)
Туре 3	17 (18%)
Type 4	10 (11%)
QCA of jailed branches	
MLD	0.45 ± 0.25 mm
Reference diameter	2.2 ± 0.5 mm
Percent stenosis	79 ± 11 %
Lesion length	7.0 ± 3.3 mm

Koo BK, et al. JACC 2005

QCA vs. FFR

in Jailed side branch lesions (n=94)

FFR vs. Percent stenosis by QCA

	Percent stenosis	
	<75%	≥75%
All lesions (n=94)		
FFR <0.75	0	20(27%)
FFR ≥0.75	20	53
Vessel size ≥2.5mm (n=20)		
FFR <0.75	0	8(38%)
FFR ≥0.75	7	13

Koo BK, et al. JACC 2005

FFR (< 0.75) VS. QCA (% stenosis)

How to treat these lesions? High risk of side branch occlusion? True bifurcation lesion with side branch MLD <0.7mm YES NO **Kissing or mini-Crush Provisional intervention Jailed side branch stenosis < 85%?** YES NO **Kissing balloon inflation** Leave it alone!!!

How to treat?

Balloon artery ratio? Goal of treatment?

Hypothesis

Large Balloon, High Pressure

Better angiographic results

Higher risk of dissection

More healing and inflammatory response → More late loss

The treatment goal of jailed SB lesion may be to maintain < 75-85% stenosis.

Therefore, balloon inflation with a relatively small size balloon would be enough, *if the gain could be maintained during follow-up.*

FFR-guided Jailed SB Intervention

- Stenting the main branch with DES
- →Measure FFR in jailed SB
- \rightarrow Side branch intervention, when FFR<0.75
 - Kissing balloon technique with a <u>relatively small</u> <u>balloon at side branch</u>
 - If FFR < 0.75 after kissing balloon,

 \rightarrow use larger balloon, or stent implantation

 \rightarrow 6 month f/u angiography and FFR

FFR-guided SB intervention

FFR: 0.61

FFR: 0.80

FFR: 0.80

FFR: 0.58

Lesions characteristics (n=95)

True bifurcation (ICPS 1, 4)	Type 1 Roper di	51 (54%)
Bifurcation angle: Y type		81 (85%)
Used stents		
Cypher / TAXUS		71%/29%
Diameter/Length		3.0 \pm 0.3/ 31 \pm 12mm
Lesion Location		
LAD/LCX/RCA		75%/21%/4%
QCA		
MB pre-PCI PS/RD/LL		77 \pm 11% /2.9 \pm 0.4mm/27 \pm 11mm
MB post PCI PS		$7.0\pm5.3\%$
SB pre-PCI PS/RD/LL		$50 \pm 21\%$ /2.3 \pm 0.4mm/6.3 \pm 2.9mm
SB post-PCI PS		78 ± 11%

QCA: quantitative coronary angiography, MB: main branch, SB: side branch, PCI: percutaneous coronary intervention, PS: percent stenosis, RD: reference diameter, LL: lesion length

Changes of Side branch FFR after Kissing

Side branch balloon/artery ratio: 0.85±0.14

Changes of FFR during 6M follow-up (67 lesions)

	Post-PCI	Follow-up	P value
Main branch	0.96 ± 0.04	0.96 ± 0.04	0.7
Jailed side branch	0.87 ± 0.06	0.87 ± 0.09	0.9
KB group	0.86 ± 0.05	0.84 ± 0.11	0.3
Non-KB group	0.87 ± 0.06	0.88 ± 0.07	0.1

KB; Kissing balloon inflation (Balloon/artery ratio = 0.85)

Angiographic restenosis criteria for jailed side branch lesions: Are these relevant?

What you see is What it is? % of Side branch lesions need further intervention

FFR-guided SB intervention

What you see is What it is!

% of Side branch lesions need further intervention

Clinical outcome?

Fractional flow reserve - guided side branch intervention vs. Conventional intervention in bifurcation lesions : Comparison of clinical outcomes

Subjects

FFR-guided group

• N=110 patients, 114 lesions

Conventional intervention group

- Selected from 220 patients with bifurcation lesions in VERITAS database
- Same inclusion and exclusion criteria
- Treatment strategy: operators' discretion
- \rightarrow 110 patients, 118 lesions

Baseline characteristics

	FFR group	Conventional group	P value
Age, years	62 ± 9	63 ± 9	0.8
Male	68%	70%	0.8
Diagnosis			0.09
Stable angina	53 (48%)	51 (46%)	
ACS	41 (37%)	52 (47%)	
Risk factors			
DM/HT/Hyperlipidemia	28/58/46%	29/60/34%	0.8/0.8/0.05
Previous PCI	15 (14%)	12 (11%)	0.5
Multi-vessel PCI	35 (32%)	33 (30%)	0.77
Lesion location			
LAD/LCX/RCA	82/26/6	71/42/5	0.1
True bifurcation (ICPS 1,4)	68 (60%)	74 (63%)	0.3
Y type (angle <70°)	93 (82%)	92 (78%)	0.4

ACS: acute coronary syndrome, PCI: percutaneous coronary intervention

Side branch intervention

Angiographic and procedural characteristics

	FFR group	Conventional group	P value
Main branch stent			
Cypher	78 (68%)	85 (72%)	0.5
Diameter/length	$3.0\pm0.3/31\pm12$ mm	3.0±0.3/30±11mm	0.3/0.6
Pre-intervention QCA			
MB percent stenosis	78±11%	79±11%	0.2
MB reference diameter	2.9±0.4mm	2.9±0.3mm	0.9
MB lesion length	26±10mm	23±9mm	0.01
SB percent stenosis	51±22%	55±21%	0.1
SB reference diameter	2.3±0.3mm	2.2±0.5mm	0.1
SB lesion length	6.4±3.0mm	7.4±4.0mm	0.04
Post-intervention QCA			
MB residual stenosis	7.1±5.5%	8.0±3.6%	0.2
SB residual stenosis	74±12%	60±20%	<0.001

Peri-procedural myocardial infarction

Nine month clinical outcomes

	FFR group	Conventional group	Р
	N=108*	N=108**	
TVR	5 (4.6%)	4 (3.7%)	0.7
ΜΙ	0	0	1
Cardiac death	0	0	1

* 1 non-cardiac death, 1 follow-up loss

** 2 follow-up losses

How to treat these lesions?

What about left main?

What about "Left Main"?

Fractional Flow Reserve (FFR)

Easily obtained, stenosis specific, simple (<0.75 \rightarrow ischemia) Reflects both degree of stenosis and myocardial territory

F/67 Unstable angina, Left main distal to LAD os lesion

M/64 Crescendo angina

After cypher 3.5x18mm LCX cross-over

9 Month follow-up angiogram

F/54 Crescendo angina

FFR-guided Left main intervention

FFR measurement: 7 times, Kissing balloon inflation: 3 times \rightarrow 25 min !

FFR-guided Left main intervention

Myocardial SPECT after PCI

No chest pain with ASA, clopidogrel, carvedilol and statin!

FFR-guided Left main intervention

M/65 Stable angina

FFR at mid LAD

Conclusion

- FFR gives us new insights into our understanding and treatment of bifurcation lesion
- In some lesions, like left main disease, FFR should be measured to accurately assess the functional significance of the lesion.

When you go with provisional strategy for bifurcation lesions;

Don't be too aggressive and

if you are in a doubt, measure the "FFR"!