SFA Stenting and the Promise of DES in the Peripheral Circulation

John R. Laird Professor of Medicine Director of the Vascular Center UC Davis Medical Center

Disclosures

- Consultant: Spectranetics
 Advisory Board: – Cordis
 - Boston Scientific
 - Medtronic Vascular
 - Edwards Lifesciences
 - -eV3

Do Stents Improve the Results of Femoropopliteal Intervention?

SFA Wallstents

Martin, etal., JVIR 1995;6:843-849

Nitinol Stents for the SFA

MAAAAAAAAA

ABSOLUTE TRIAL 6 Mo Angiographic Restenosis

Schillinger M et al. N Engl J Med 2006;354:1879-1888

ABSOLUTE TRIAL Restenosis Rates by DUS

	Stent (n=51)	PTA +/- Stent (n=53)	p-value
Duplex sonographic restenosis @ 3 mo	7/51 (13.7%)	12/53 (22.6%)	0.24
Duplex sonographic restenosis @ 6 mo	13/51 (25.5%)	24/53 (45.3%)	0.035
Duplex sonographic restenosis @ 12 mo	18/49 (36.7%)	33/52 (63.5%)	0.007

DEPARTMENT OF ANGIOLOGY – GENERAL HOSPITAL VIENNA

Schillinger M et al. N Engl J Med 2006;354:1879-1888

The Dark Side of SFA Stenting

FP Primary Stenting *The Problem of Late Restenosis*

Results of X-Ray Screening – FESTO Trial 10.7 Month Follow-up

• Fractures in 45 of 121 treated legs:

• Fractures in 64 of 261 implanted stents:

Does Stent Design Matter?

Edwards LifeStent Stent System

- Unique helical pattern enables multidimensional flexibility
 - Bending up to 180° or twisting without kinking
 - High radial strength

RESILIENT Trial

A <u>Randomized Study Comparing the</u> <u>Edwards Self-Expanding LifeStent vs.</u> <u>Angioplasty-alone In LEsions</u> <u>INvolving The SFA &/or Proximal</u> <u>Popliteal Artery</u>

RESILIENT TRIAL

- Multi-center, prospective, randomized trial comparing balloon angioplasty to stenting for SFA disease (LifeStent)
- 20 patient feasibility trial
- 206 patient randomized trial
- 2:1 randomization

RESILIENT 30-Day Results

Measure	All PTA Patients	All Stent Patients
Target Limb ABI (mmHg), $\mu \pm$ S.D. (#)	0.9 ± 0.1 (58)	1.0 ± 0.1 (143)
Rutherford Category		
Category 0, % (#)	61.3% (30/58)	62.8% (91/145)
Category 1, % (#)	27.0% (18/58)	25.5% (37/145)
Category 2, % (#)	9.0% (6/58)	9.7% (14/145)
Category 3, % (#)	2.7% (2/58)	2.1% (3/145)
Category 4, % (#)	1.7% (1/58)	0.0% (0/145)
Category 5, % (#)	1.7% (1/58)	0.0% (0/145)
Clinical Success, % (#)	87.9% (51/58)	95.8% (138/144)
Primary Patency (duplex), % (#)	57.4% (27/47)	99.2% (118/119)
Freedom from Re-Intervention, % (#)	58.0% (40/69)	99.4% (160/161)

RESILIENT Trial Interim Results 6-Month Results

Measure	PTA Patients	LifeStent Patients
Target Limb ABI (mmHg), $\mu \pm$ S.D. (#)	0.9 ± 0.2 (58)	0.9 ± 0.2 (102)
Clinical Success, % (#)	56.8% (42)	67.4% (89)
Primary Patency (duplex), % (#)	41.2%	89.7%
Freedom from Re-Intervention, %	56 .5%	94.6%

Clinical Success: Sustained one Rutherford category improvement from baseline. Primary Patency: Duplex velocity increase greater than 2.5 over normal and no prior intervention

RESILIENT Trial Interim Results 12-Month Results

Measure	PTA Patients	LifeStent Patients
Target Limb ABI (mmHg), $\mu \pm$ S.D. (#)	0.9 ± 0.2 (31)	0.9 ± 0.2 (61)
Freedom from Re-Intervention, %	44.1%	81.5%

Stent Fracture

Measure	12-months	
No. of Stented Subjects	81	
No. of Implanted Stents	136	
No. of Fracture Stents	5*	
Fracture Rate (per evaluable stents)	3.7%	

*No clinical symptoms, all treated vessels patent at last follow-up

DES in the Peripheral Circulation: Promise Yet Unfulfilled

SFA Drug Eluting Stents Issues to be Resolved

- Best drug?
- Proper dose?
- Ideal release kinetics?
- Type of polymer vs no polymer?
- Impact of stent fracture?
- Is diffusion an adequate mechanism for drug delivery?

METHODS OF STENT-MEDIATED DELIVERY

Polymeric slow-release sirolimus eluting stents: Comparison of Coronary and SFA Designs

Component	Coronary	SFA
Stent Material/Type	316L Stainless steel	Nitinol
	Balloon expandable	Self-expanding
Polymer	EVA:BMA	PVDF-HFP
Drug/polymer ratio	33:67	30:70
Physical properties	Non-absorbable	Non-absorbable
	Elastomeric	Elastomeric
Coating methods	Spray-coat	Spin-coat
Sirolimus surface	140 ug/cm ²	52 ug/cm ²
dose/stent area	3.5x18mm = 180ug	6x80mm=1000ug
Sirolimus surface dose/vessel area	90 ug/cm²	66 ug/cm²

Courtesy of Andy Carter

What is the Proper Dose?

Dose of Sirolimus in SIROCCO Trial: 1 mg per 6 x 80 cm SMART stent

SIROCCO I Six Month Angiographic Results

	Slower eluting	Fast eluting	Control
	N=5	N=11	N=17
MLD (mm)	4.31	3.47	3.28
Late Loss (mm)	0.39	0.72	1.03
Restenosis Rate	0%	0%	17.6%

SIROCCO II Six Month Angiographic Results

	Sirolimus N=24	Control N=26
MLD (mm)	3.91±0.72	3.62±0.91
Late Loss (mm)	0.38±0.64	0.68±0.97
Restenosis Rate	0%	7.7%

Zilver[®] PTX[™] Coating

- Paclitaxel only (no polymer or binder)
- Thin coating (less than 5 microns)
- 3 microgm/mm² dose density (maximum 880 microgm total dose, largest stent)

What are the Optimal Release Kinetics?

Is the time course of restenosis the same in the SFA?

Late Failures in SIROCCO I 18 Month Follow-up

	Slower Eluting n=5	Fast Eluting n=9
Binary Restenosis	0	33%
Total Occlusion	0	0
TLR	0	11% (1)

Late Failures in SIROCCO I 24 Month Follow-up

	Slower Eluting n=5	Fast Eluting n=9
Binary Restenosis	40% (2)	44% (4)
Total Occlusion	0	0
TLR	0	11% (1)

SIROCCO II – 24 Months Duplex Restenosis/Reocclusion N=57

	6	9	18 Months	24 Months
	Months	Months		
Sirolimus Coated N=29	0%	10.3%	20.7%	24.1%
Bare Metal N=28	7.7%	14.3%	17.9%	25.0%

Polymer vs. No Polymer?

What Will Happen to the Polymer?

Drug-Eluting Stent

SFA DES – Where do we Stand?

- SIROCCO II confirmed the short term efficacy of the slower release formulation identified in SIROCCO I.
- Slower eluting data pooled from SIROCCO I and II resulted in an early statistically significant difference in the primary endpoint (mean stent diameter), however, this advantage was lost by 18 months.
- The DESTINY trial using the Cook Zilver PTX devices with Paclitaxel recently completed Phase 1 - enrolling 60 patients with SFA disease <7cm long.

Conclusions

- Recent trials have shown that Nitinol stents appear superior to balloon angioplasty in the SFA (lesion lengths less than 15 cm)
- There are important limitations of SFA stenting: late restenosis, stent fracture, increased restenosis for diabetics and long lesions
- Given these limitations, there is hope that DES will improve outcomes in the SFA
- Many unanswered questions, and no proof yet that DES will be more effective than BMS in the SFA