Biodegradable Stents

Maurice Buchbinder, MD
Foundation for Cardiovascular Medicine
La Jolla, CA
Why Degradable Stents?

- No late adverse events
 - Late thrombosis
 - Hypersensitivity reactions (chronic inflammation)
 - Stent fractures
- Does not restrict arterial remodeling
- Permits non-invasive imaging of artery
- Permits bypass surgery in future
Mechanism of Restenosis

- Acute Recoil
- Intimal Hyperplasia
- Chronic Recoil
Intimal Hyperplasia

- Acute Recoil
- Intimal Hyperplasia
- Chronic Recoil

(% Response)

Days Post Injury

- Thrombosis
- Inflammation
- Proliferation
- Extracellular Matrix Production
Materials Applied for Development of Biodegradable Stents

<table>
<thead>
<tr>
<th>Material</th>
<th>Stent</th>
<th>Status</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polymers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLA</td>
<td>Thermal balloon expandable, ring (Igaki-Tamai)</td>
<td>4-year clinical data</td>
<td>Tamai et al. CCT 2004</td>
</tr>
<tr>
<td>PLA</td>
<td>Balloon expandable, tubular (REVA Medical)</td>
<td>Pre-clinical</td>
<td>Kaluza G. TCT 2006</td>
</tr>
<tr>
<td>PLA</td>
<td>Balloon expandable, tubular</td>
<td>Pre-clinical</td>
<td>Robinson KA. TCT 2006</td>
</tr>
<tr>
<td>Tyrosine-polycarbonate</td>
<td>Balloon expandable, (REVA Medical)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAE-Salicylate</td>
<td>Balloon expandable, tubular</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metallic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td>Balloon expandable, tubular (Biotronik)</td>
<td>Phase I Clinical</td>
<td>Heublein B et al. Heart 2003;89:651-656</td>
</tr>
</tbody>
</table>
Bioresorbable Stents

- Igaki-Tamai
- BVS
- REVA
- BIT
- Biotronik

Materials:
- PLA
- Tyrosine-Policarbonate
- PAE-Salicylate
- Magnesium
PLA Metabolic Pathway

- PLA
- Hydrolysis
- Lactic Acid
- Mass Loss
- Mass Transport
- Krebs Cycle
- $\text{CO}_2 + \text{H}_2\text{O}$

Generalized Degradation Curves

Igaki-Tamai PLLA Bioabsorbable Stent

- 63 lesions in 50 patients, 84 stents
- Non drug eluting stent
- Four year follow-up data demonstrated no unusual findings

Long Term (3-years)

<table>
<thead>
<tr>
<th>Event</th>
<th>Death</th>
<th>QMI</th>
<th>CABG</th>
<th>Stent Thrombosis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1/50* (2.0%)</td>
<td>0</td>
<td>1/50* (2.0%)</td>
</tr>
</tbody>
</table>

* = same patient

ABRR** & Repeat PCI

<table>
<thead>
<tr>
<th>Time</th>
<th>ABRR**</th>
<th>Repeat PCI</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 mo</td>
<td>12/60 (20%)</td>
<td>6/50 (12%)</td>
</tr>
<tr>
<td>12 mo</td>
<td>9/53 (17%)</td>
<td>7/50 (14%)</td>
</tr>
<tr>
<td>36 mo</td>
<td>8/50 (16%)</td>
<td></td>
</tr>
</tbody>
</table>

Biodegradable Stents An update and work-in-progress Presentation, Hideo Tamai CCT 2003

**ABRR (Angiographic Binary Restenosis Rate) per lesion.
Igaki-Tamai PLLA Bioabsorbable Stent: 3-year Angiographic Analysis

MLD (mm)

% Diameter Stenosis

Pre Post 6-mos 12-mos 24-mos 36-mos

0 0.5 1 1.5 2 2.5 3

0 20 40 60 80 100

69 2.68 1.76 2.01 2.08 2.22

12 38 29 26 25

Maurice Buchbinder, MD
Foundation for Cardiovascular Medicine

Tamai CCT 2004
Material Characteristics of the BVS Bioabsorbable Polymeric DES

Everolimus/PLA Matrix Coating
- Thin coating layer
- 1:1 ratio of Everolimus/PLA matrix
- Controlled drug release

PLA Stent
- Laser cut, tubular
- Processed for increased radial strength
ABSORB Study Design

- **Single, de-novo lesion**
- **3.0 mm n = 30**
- **BVS Stent**

- **Sponsor:** Abbott Vascular
- **Primary Investigators:**
 - J Ormiston MD
 - PW Serruys MD, PhD
- **DSMB:** J Tijssen PhD, T Lefèvre MD, P Urban MD
- **CEC:** C Hanet MD, D McClean MD, V Umans MD
- **Angiographic and IVUS Corelab:** Cardialysis (Rotterdam, NL)

- **Prospective, open label, FIM**
- **3.0 x 12mm stents (3.0 x 18mm* stents available after enrolment start and used in 2 pts)**
- **6 sites EU, NZ**
 - Rotterdam, NL, Patrick Serruys (16)
 - Krakow, PL, Dariusz Dudek (6)
 - Auckland, NZ, John Ormiston (5)
 - Arhus, DN, Leif Thuesen (3)
 - Aalst, BE, Bernard de Bruyne
 - St Denis, F, Bernard Chevalier

Serruys at al. ACC 2007
ABSORB
Late Loss (26 pts)

BMS loss from SPIRIT FIRST (n=27)

Mean: 0.85 ± 0.36mm, 95%CI [0.71, 1.00mm]
Median: 0.85mm,
25, 75% percentile [0.55, 1.14mm]
Diameter stenosis at follow-up (26pts)

Mean: 27 ± 14%,
95%CI [22, 33%]
Median: 25%
25, 75% percentile [19, 37%]

Binary restenosis: 11.5 % (3/26)
No TLR
ABSORB:IVUS results (24 pts)

<table>
<thead>
<tr>
<th></th>
<th>Post-PCI</th>
<th>Follow-up</th>
<th>% Difference</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vessel area (mm²)</td>
<td>13.55</td>
<td>13.49</td>
<td>-0.4</td>
<td>NS</td>
</tr>
<tr>
<td>EEM-Stent Area (mm²)</td>
<td>7.47</td>
<td>8.08</td>
<td>+8.2</td>
<td>0.003</td>
</tr>
<tr>
<td>Stent area (mm²)</td>
<td>6.08</td>
<td>5.37</td>
<td>-11.7</td>
<td><0.001</td>
</tr>
<tr>
<td>Neointimal hyperplasia area (mm²)</td>
<td>0</td>
<td>0.30</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Lumen area (mm²)</td>
<td>6.08</td>
<td>5.07</td>
<td>-16.6</td>
<td><0.001</td>
</tr>
<tr>
<td>Stent area obstruction (%)</td>
<td>0</td>
<td>5.55</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>
• Steel-like performance in a polymer stent
• Low recoil (<1%)
• High radial strength
• Flexible and conformable

Deploys (expands) in artery with sliding, locking parts rather than material deformation
REVA
Bioresorbable Polymer Material

- Developed for stent performance
- Tunable resorption rate
- Benign breakdown products
- X-ray visibility
- MRI/CT compatibility

Tyrosine-derived Polycarbonate Stent
RESORB Clinical Trial

The REVA Endovascular Study of a Bioresorbable Coronary Stent
RESORB Trial
Endpoints and Follow-Up

• Endpoints
 – Primary – 30 day MACE
 – Secondary – 6 month QCA & IVUS derived parameters (restenosis)

• Clinical Follow-up
 – Discharge, 2 weeks, 1, 6, 12*, 24*, 36, 48 and 60 months
 – * Subset of patients returning for long term angiographic follow-up
Magnesium and the Human Body

- Essential element for human body involved in the synthesis of more than 300 enzymes (4th most common mineral)
- Quantity in human body: ~ 20 g
- Daily need (adult): ~ 350 mg
- Quantity in the intracellular space: > 40%

- Degradation by replacement with Calcium and Phosphorous (2 months)

AMS, Biotronik
Magnesium Alloy Biodegradable Stent

3.0 x 10 mm stent: ~ 3 mg
• **Anti-inflammatory:**
 - Salicylic acid (active ingredient in aspirin) chemically incorporated into polymer backbone

• **Combination therapy:**
 - Anti-neoplastic (sirolimus)
 - Plus anti-inflammatory (salicylic acid)
 - Elution over first month post-implant
Polyanhydride Polymers (PAE)

Polymer A:

<table>
<thead>
<tr>
<th>Salicylic acid</th>
<th>Polylactide Anhydride (Linker)</th>
<th>Salicylic acid</th>
</tr>
</thead>
</table>

Polymer B:

<table>
<thead>
<tr>
<th>Salicylic acid</th>
<th>Adipic acid</th>
<th>Salicylic acid</th>
</tr>
</thead>
</table>

Poly(anhydride based on salicylic acid and adipic acid anhydride)
Bioabsorbable Stent Design

- Core: Polymer A
- Undercoat: Polymer B
- Drug Layer: Polymer B + Sirolimus
- Topcoat: Polymer B

Coating Layers
Multi-Layer, Combination Drug Delivery
Stent Design

- Balloon expandable
- No foreshortening
- Suitable for primary stenting
- Radiopaque
- Good scaffolding and mechanical properties
- Excellent side branch access
- Full range of diameters and lengths
- No special storage required
Radial Strength

Atmospheres (10% Compression)

- BTI: 1.17
- MultiLink: 0.91
- Cypher: 1.96
Pre-Clinical Results

<table>
<thead>
<tr>
<th>Study</th>
<th>Arm 1</th>
<th>Arm 2</th>
<th>Arm 3</th>
<th>End points</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAE Vascular Compatibility</td>
<td>BMS (no coating)</td>
<td>PLA coated metal stent</td>
<td>PAE coated metal stent</td>
<td>3D: FC, 30D: A/H</td>
</tr>
<tr>
<td>PAE + Sirolimus Efficacy</td>
<td>Cypher</td>
<td>PLA + sirolimus coated BX Velocity</td>
<td>PAE + sirolimus coated BX Velocity</td>
<td>3D: FC, 30D: A/H, 90D: A/H</td>
</tr>
</tbody>
</table>
Mean Percent Stenosis in Pig Coronary Arteries One Month after Stent Implant

- **BMS**: 15% mean stenosis, intimal thickness 0.23 mm
- **Salicylate only**: 16% mean stenosis, intimal thickness 0.23 mm
- **Cypher**: 5% mean stenosis, intimal thickness 0.13 mm
- **Salicylate with Sirolimus**: 6% mean stenosis, intimal thickness 0.14 mm

Maurice Buchbinder, MD
Foundation for Cardiovascular Medicine
30-Day Histology
Day 3 Flow Cytometry

- All Leukocytes
 - CD45: 8.38 PAE, 9.63 PLA

- Activated Lymphocytes and Macrophages
 - CD25: 0.50 PAE, 0.88 PLA

- Prolif Endothelial Cells
 - CD31: 2.63 PAE, 2.06 PLA

Maurice Buchbinder, MD
Foundation for Cardiovascular Medicine
Day 30 Inflammation Scores

Mean Inflammation Score

- BMS: 1.3
- Cypher: 1.3
- Salicylate only: 1.0
- Salicylate with Sirolimus: 1.0
Conclusion

- Though biodegradable polymer stents seem to be the ultimate candidate for the “ideal stent” further evaluation is needed to understand their role as a substitute for bare metal or present generation metallic drug eluting stents.

- They could also be the ideal vehicle for several other applications: non-obstructive vulnerable plaque, gene transfer for infarct repair and angiogenesis.....
“Biodegradable Stents: They Do Their Job and Disappear”

- Ron Waksman