Is SFA Nitinol Stenting the New Standard of Care?

TCT Asia Pacific - 2007

Krishna Rocha-Singh, M.D., F.A.C.C. Director, Prairie Vascular Institute Springfield, IL

Is SFA Nitinol Stenting the New Standard of Care?

A Provocative Question

- What is the "old" standard of care?
- How should the "new" standard of care be defined and evaluated?
- Review recent interim nitinol stent data

Is SFA Nitinol Stenting the New Standard of Care?

<u>Surgery</u>

- More durable
- Gold standard
- M/M and \$

- Less M/M
- Outpatient setting
- Shorter LOS

<u>Endovascular</u>

- De facto standard of care (renals)
 Patient
 - preference
- ? Less durable in the SFA

SFA Patency after PTA

Dorrucci '04

SFA PTA **Primary Patency** Meta-analysis (N = 1003)**Lesion Severity: Lesion Type:** Stenosis Claudication 64% 65% Occlusion **Critical Ischemia** 36% 35% % Primary Patency 1 Year 2 Years 3 Years 4 Years **5 Years 59** 54 52 **49 45** Kandarpa, JVIR 2001;12:683-695.

Unanswered Questions: SFA PTA

- Impact of lesion length on patency?
- These questions are best answered in randomized controlled trials
 - Time point is patency assessment?
 - What the clinical impact of patency?
 - What about safety of PTA?

Why Have RCT in the SFA Been So Challenging?

- Balance between clinically relevant and doable trial v. ideal clinical design
- Physician bias/skepticism
- Trial design issues: Intention to Treat issues
- Heterogeneity of patient cohort

 Uniform patient cohort
 Uniform endpoint definitions and follow-up time points

- Uniform patient cohort
- Uniform endpoint definitions and follow-up time points
- Independent endpoint adjudication

- Uniform patient cohort
- Uniform endpoint definitions and follow-up time points
- Independent endpoint adjudication
- Safety assessment

Uniform patient cohort

Development of PTA SFA Performance Goals

- Independent endpoint adjudication
- Safety assessment

PTA Performance Goals Requirements:

 Combination of peer-reviewed literature data and industry PTA control arm data from PMA device trials in the SFA

PTA Performance Goals Requirements:

- Combination of peer-reviewed literature data and industry PTA control arm data from PMA device trials in the SFA
- Uniform methods for adjudication of safety and efficacy endpoints

PTA Performance Goals Requirements:

- Combination of peer-reviewed literature data and industry PTA control arm data from PMA device trials in the SFA
- Uniform methods for adjudication of safety and efficacy endpoints
- Uniform time point assessment

PTA Cohort Parameters

- Rutherford Class 2-4 patients
- Femoropopliteal lesion lengths 4-15 cm TASC C-D lesions
- Efficacy: Binary restenosis by DUS (PVS ratio >2)
- Safety: 30 day and 12 month death, amputation, TLR and change in Rutherford Class

Literature Review Requirements: • Peer-reviewed literature 1990-2006

- PTA control arms of randomized trials (PTA v. stent, PTA v. brachytherapy, PTA v. bypass)
- Meet established safety and efficacy assessment endpoints

Literature Review Requirements: • Peer-reviewed literature 1990-2006

- PTA control arms of randomized trials (PTA v. stent, PTA v. brachytherapy, PTA v. bypass)
- Meet established safety and efficacy assessment endpoints

Literature Review Requirements: • Peer-reviewed literature 1990-2006

- PTA control arms of randomized trials (PTA v. stent, PTA v. brachytherapy, PTA v. bypass)
- Meet established safety and efficacy assessment endpoints

How Good is PTA in Moderate SFA Disease?

Results from Literature RCTs

 \geq 4-15 cm PTA Control Arm:

Pokrajac '04 -Zdanowski '99 Minar '00 van der Zaag '04 Schillinger '06

1º Patency 37%

Mostly Claudicants

12 mo. duplex Doppler PSV ratio >2.0 per patient analysis; n=201

Just How Good is PTA in Diffuse SFA Disease?

Results from 3 Industry SFA PMA Trials \geq 4-15 cm PTA Control Arm:

- Company A (11.7cm) 12%
- Company B (6.8 cm) 14%
- Company C (8.2 cm) 39%
 - (8.7 cm) 28%

12 mo. DUS ratio PSV >2.0 per patient analysis; n=135

Combined Literature and Industry PTA Data

Literature: n=201 12 mo 1° patency 37%

Industry: n=135 12 mo 1° patency 28%

Combined 12 mo 1º patency 33%

How Well Does SFA Nitinol Stenting Compare to PTA?

Early results from peerreviewed RCTs of PTA v. stenting

RCT Trial /Stent	No. of Patients	Lesion Length	Primary Patency %
SIROCCOII/Cordis (6 mo. angio)	28	7.6 cm	92.3
BLASTER/Cordis (9 mo/DUS ≥ 2.5)	51	11.8	88
ABSOLUTE/Abbott	51	10.1	63
FAST*/Bard	123	4.5	77
RESILIENT*/Edwards (6 mo./ DUS ≥2.5)	172	6.2	89.7
ZILVER PTX*/Cook Bare stent (n=8)/9 mo. DUS)	8	3.6	75
TOTAL *Not peer-reviewed	433	5.1 cm	80.0%

PTA v. Viabahn Patency: 12 mo

Lesion Length	ΡΤΑ	Viabahn	P value	
ALL	40% (6.7cm)	62% (7.3 cm)	0.0003	
3-6 cm	39%	56%	0.0827	
6-9 cm	28%	66%	0.0018	
9-12 cm	38%	67%	0.07	
>12 cm	17%	54%	0.0147	
Viababa@ Instructions for Use				

Viabahn® Instructions for Use

Is Nitinol Stenting the New Standard of Care in the SFA?

- Yes, *BUT* specific definitions of this standard are required:
 - Not in short lesions (4-5 cm)
 - Patency definition (DUS PSV)
 - Patient cohort
 - Clinical impact

Future Directions for Clinical Study

- Long Lesions (>10 cm)
- Durability (>1 yr)
- Clinical Impact
- Secondary Patency and treatment of ISR

