

Percutaneous coronary intervention in patients with diabetes mellitus

Dr Angela Hoye
MB ChB PhD MRCP
Interventional Cardiologist
Kingston-upon-Hull, UK

Diabetes mellitus: prevalence

The prevalence is increasing:

- within the next 25 years, the worldwide prevalence is estimated to double

Wild et al Diabetes Care 2004;27:1047-53

The global burden of diabetes

Estimated top 10: Number of people with diabetes (20-79 age group), 2003 and 2025

	2003			2025		
	Country	Persons (millions)		Country	Persons (millions)	
1	India	35.5	1	India	73.5	
2	China, People's Republic of	23.8	2	China, People's Republic of	46.1	
3	USA	16.0	3	USA	23.1	
4	Russia	9.7	4	Pakistan	11.6	
5	Japan	6.7	5	Russia	10.7	
6	Germany	6.3	6	Brazil	10.7	
7	Pakistan	6.2	7	Mexico	9.0	
8	Brazil	5.7	8	Egypt	7.8	
9	Mexico	4.4	9	Japan	7.1	
10	Egypt	3.9	10	Germany	7.1	

- Patients with DM have a 2-4x increased risk of cardiovascular disease and a significantly shorter life expectancy
- Cardiovascular disease is responsible for 75-80% deaths in diabetic patients

Source: International Diabetes Federation

Complex coronary disease

- Multivessel disease
- Diffuse disease
- Small vessel disease
- Distal disease
- Calcification
- Impaired left ventricular function

Pathophysiology

- Atherogenic dyslipidemia
 - high triglyceride levels: enhanced thrombogenicity, remnant triglyceride-rich lipoproteins
 - small dense LDL particles: increased penetration of arterial intima, enhanced proteoglycan binding, increased oxidation potential
 - low HDL cholesterol: reduced antioxidant and antiinflammatory activity
- Impaired endothelial function decreased nitric oxide, increased endothelin-1 and angiotensin II increases vascular tone and smooth muscle cell migration and growth

Pathophysiology

Prothrombotic milieu –

- increased platelet activation:
 - (increased number of circulating platelets, decreased platelet cAMP, increased GP IIb/IIIa receptor density, increased vitronectin circulating fibrinogen and thrombin / antithrombin II complexes, increased P-selectin)
- coagulation cascade activation:
 - (increased fibrinogen, increased von Willebrand factor, increased FPA (increased thrombin activity), decreased activity of AT III, decreased sulfation of endogenous heparin)
- impaired fibrinolysis:
 - (increased plasminogen activator inhibitor-1 synthesis, (directly increased by insulin & IGF-1, decreased concentration of alpha-2 antiplasmin

Prognosis of patients with DM and coronary artery disease

5-year survival curves for 3320 patients (24% diabetic) treated at Duke Medical Center, for multivessel disease

MACE following PCI in diabetic patients

- Diabetic patients have higher rates of MACE
- Diabetes increases restenosis
 - -?increased rates if on insulin therapy
- Diabetes is an independent predictor of TLR

Worse prognosis in ACS

- GRACE registry: prospective multicenter study of patients with ACS
 - diabetic versus non-diabetic pts

In-hospital	STEMI		NSTEMI		Unstable angina	
outcomes	DM	Non-DM	DM	Non-DM	DM	Non-DM
n	1141	4262	1271	3454	1489	4499
Death	1.48 (1	.03-2.13)	1.14 (0	0.85-1.52)	1.41 (1	.02-1.95)
Cardiogenic shock	1.08 (0	.76-1.53)	1.09 (0	0.79-1.50)	1.33 (0).88-2.02)
Heart failure	1.74 (1	.43-2.11)	1.88 (′	1.60-2.21)	1.80 (1	.50-2.18)
Renal failure	1.50 (1	.00-2.23)	1.72 (′	1.32-2.25)	2.12 (1	.45-3.08)

Franklin et al Arch Int Med 2004;164:1457-1463

Worse prognosis with AMI

- VALIANT study of 14,703 patients with AMI
 - Known DM (n=3,400 23%)
 - Newly diagnosed DM (n=580, 4%)
 - No DM (n=10,719)

Survival at 1 year by diabetic status

p<0.001 for previous DM vs no DM p<0.001 for new DM vs no DM p=0.43 for previous DM vs new DM

Prognosis of patients with DM and coronary artery disease

- Long-term survival rates of 604 diabetic patients following successful balloon angioplasty
- Stratified according to the results of follow-up angiography at 6-months

DIABETES trial: in-segment restenosis rate at 9-months

BMS (n=80)

SES tended to have shorter length of restenosis

Occlusive restenosis occurred in 5.5% BMS versus 0.9% SES, (p=0.07)

Sabate et al Circulation 2005;112:2175-2183

DIABETES trial: clinical outcomes at 9-months

	SES n=80	BMS n=80	p value
Death, n (%)	1 (1.3)	2 (2.5)	ns
Q-MI, n (%)	1 (1.3)	0	ns
Non-Q MI, n (%)	1 (1.3)	5 (6.3)	ns
TLR, n (%)	5 (6.3)	25 (31.3)	<0.0001
MACE, n (%)	8 (10.0)	29 (36.3)	<0.0001

Sabate et al Circulation 2005;112:2175-2183

TAXUS™ Stent in diabetics

TAXUS 4 yr meta-analysis: All Diabetics
TAXUS II¹ (4 yr), IV² (4 yr), V³ (2yr), VI⁴ (3 yr) studies (N=814)

TAXUS 4 year meta-analysis, presented by Dr. Baim, TCT 2006. 1. Colombo et al. Circulation. 003;108:788; 2. Stone et al. N Engl Med. 2004;350:221; 3. Stone et al. JAMA. 2005;294:1215; 4. Dawkins et al. Circulation. 2005;112:3306.

Prothrombotic milieu: increased risk of stent thrombosis

- Independent predictors of stent thrombosis
- 2229 pts undergoing "real world" DES implantation

Predictor	HR (95% CI)	P value
Premature APT discontinuation	89.78 (29.90-269.60)	<0.001
Renal failure	6.49 (2.60-16.15)	<0.001
Bifurcation lesion	6.42 (2.93-14.07)	<0.001
Diabetes	3.71 (1.74-7.89)	0.001
LV EF per 10% decrease	1.09 (1.05-1.13)	<0.001

Prothrombotic milieu: increased risk of stent thrombosis

- 8,146 patients treated with DES implantation (SES, n=3823, PES n=4323)
- Angiographically confirmed stent thrombosis occurred in 152 patients (cumulative incidence at 3 years 2.9%)
- Independent predictors of stent thrombosis
 - ACS at presentation (HR 2.28, 95% CI 1.29-4.03)
 - Diabetes (HR 2.03, 95% CI 1.07-3.83)

Anti-platelet therapy

- Diabetic platelets are different!
 - Platelets have reduced membrane fluidity perhaps reflecting glycation of membrane proteins, and also related to increased intracellular calcium mobilization
 - Arachidonic acid metabolism is increased, leading to enhanced thromboxane A2 production
 - Reduced intracellular magnesium concentration consistent with increased platelet hyperaggregability and adhesiveness
 - Diabetic platelets produce less NO (platelets contains less NO synthase) and prostacyclin, which normally inhibit plateletendothelium interactions and promote endothelium-mediated vasodilation
 - Platelets have increased expression of activation-dependent adhesion molecules eg GPIIb/IIIa, thrombospondin, and Pselectin
 - Patients with DM have a greater rate of platelet turnover

GPIIb/IIIa inhibitor use in diabetic patients with ACS

- 6,458 diabetic patients
 - GPIIb/IIIa inhibitor use reduced 30-day mortality (4.6% versus 6.2% (OR 0.74; 95% CI 0.59-0.92, p=0.007))
 - 1,279 diabetic patients had PCI during index admission, in this subgroup, GPIIb/IIIa inhibitor use reduced 30-day mortality (1.2% versus 4.0% (OR 0.30; 95% CI 0.14-0.69, p=0.002))

GPIIb/IIIa inhibitor use in DM: abciximab

- Pooled data from EPIC, EPILOG, and EPISTENT
- Abciximab versus placebo in patients undergoing elective or urgent PCI
- 1,462 patients with DM

 Abciximab reduced mortality from 4.5% to 2.5%, p=0.03

Bhatt et al JACC 2000;35:922-8

OPTIMUS

- Type 2 diabetics (n=40) with CAD and previous PCI, with a suboptimal response to clopidogrel
- Randomised to 150mg od versus 75mg od clopidogrel, with assessment of platelet function
- Inhibition of late platelet aggregation between baseline and at 30 days, assessed after 30µmol/L and 5 µmol/L ADP

ACUITY

ACS: Unstable angina or NSTEMI, N=13,819
Chest pain >10' within 24 hours, plus
Biomarker +, or
Dynamic ECG changes, or
Documented CAD or all other TIMI risk criteria

ASA
Clopidogrel —
per local practice

Prior UFH, LMWH (1 dose), eptifibatide and tirofiban were allowed

Enoxaparin or UFH Bivalirudin + Hb/IIIa inhibitor

Bivalirudin provisional IIb/IIIa inhibitor

Cath within 72 hours
PCI, CABG or medical management

30 day endpoints

Death, MI, IUR, ACUITY major bleeding

(net clinical outcome)

Feit et al, presented at TCT 2006

ACUITY diabetic subgroup: 30-day results

- Heparin + GPIIb/IIIa (n=703)
- Bivalirudin + GPIIb/IIIa (n=713)
- Bivalirudin alone (n=721)

Characteristics of the diabetic patient

We must take a holistic approach to the management of patients with diabetes mellitus

The importance of glycemic control

 160 patients with DM randomised to conventional therapy vs intensive therapy of cardiovascular risk factors

- Bp
- Lipids
- Diet
- HbA1c
- Primary endpoint was composite of death, MI, stroke, revascularisation, amputation

Optimal glycaemic control is associated with less TVR

- 239 patients undergoing elective PCI
- HbA1c ≤7% versus HbA1C >7%
- HbA1c was an independent predictor of TVR

Fluvastatin after PCI: LIPS study

- DM n=202, no DM n=1475
- Fluvastatin 80mg od versus placebo
- MACE: death, MI, reintervention
- ➤ Diabetes increased the rate of MACE almost 2-fold in patients treated with placebo (RR 1.78, 95% CI:1.20-2.64, p=0.0045)
- ➤ However, in diabetic patients, fluvastatin reduced the risk of MACE by 51% (p=0.009)

BARI 2D-trial (sponsored by NHLBI)

 Revascularization versus no revascularization in insulin versus non-insulin-treated diabetic patients with mild / moderate symptoms

The CARDia Trial

- Multi-centre, randomised, prospective study of revascularization in diabetics in the UK
- Multivessel disease or complex single vessel disease
- DES (with abciximab) versus CABG (use of LIMA, on or off pump)
- Evaluation of 600 patients (so far recruited approx 90%)
- Primary endpoint: composite of death, AMI, or stroke at 1 year

FREEDOM trial (sponsored by NHLBI)

DES versus CABG in diabetics with multivessel disease

PI: Valentin Fuster

Eligibility: DM patients with ≥2 vessel disease suitable for stent or surgery

Exclude: AMI and / or cardiogenic shock

.

2400 patients randomised 1:1

DES Cypher or Taxus with abciximab

CABG

Primary endpoint: 3 yr composite of death, AMI, or stroke

Medical therapy: HbA_{1c} <7.0%

target BP <130/80mmHg

target LDL <70mg/dL

All patients to receive both aspirin and clopidogrel for 1 year

Conclusions

- Outcomes in diabetic patients are worse whether treated by PCI or CABG compared with non-diabetics
 - More complex disease
 - Less complete revascularization
 - Increased lesion progression
- DES are effective in DM, however DM remains an independent predictor of MACE and TLR
- Remember to optimise medical therapy
 - Pre-procedure eg renal function, clopidogrel loading
 - Peri-procedure eg GPIIb/IIIa inhibitor / bivalirudin
 - Post-procedure eg glycemic control, BP control