PCI for unprotected LMT Complicated by CHF

Keiichi Igarashi, MD., PhD
Division of Cardiology, Cardiovascular Center
Hokkaido Social Insurance Hospital
Sapporo, JAPAN
Case

Case: 80 y.o. Female

Clinical Course:

1998.8 ACS (RCA)
 proximal RCA Multilink φ3.5mm, distal RCA Multilink φ3.0mm.
 CAG: proximal LAD 100% (←RCA PDA).

2006.10.14 Admission for treatment of CHF.
 CAG was performed because of new onset rest angina.
 UCG: wall motion antero-septal severe hypo EF35%
 11.10 CAG: LMT ostium 99%, proximal LAD CTO
ECG on admission
UCG on admission

AR I/IV MR II/IV TR I/IV PR I/IV

LAD 48.3mm LVDd 58.1mm

EF 35.1% FS 17.0

Wall motion: ant-sept severe hypokinesis

Pleural effusion(+)(R<L)

Pericardial effusion(+)

Division of Cardiology, Cardiovascular Center, Hokkaido Social Insurance Hospital
Wall motion: ante-septal severe hypokinesis
Perfusion delay: mid anterior persistent delay
Delayed enhancement: subend antero-septal (+)
Control CAG (LCA)

LCA ; LMT ostium 99%, proximal LAD CTO, RCA → LAD collateral(+)

Division of Cardiology, Cardiovascular Center, Hokkaido Social Insurance Hospital
Control CAG (RCA)

LCA ; LMT 99%, LAD CTO, RCA → LAD collateral(+)
RCA ; proximal and distal STENT ISR(-)
Questions

- How do you treat the unstable LMT case complicated by CHF, PCI or CABG?

- If PCI is selected, what is your strategy to fix this case successfully.
The patient wanted to receive

complete coronary revascularization by PCI.
Strategy for Complete Revascularization

PCI for non-protected LMT ostial lesion under IABP support.

Staged PCI for LAD CTO after improvement of LV function with LCX and Diagonal revascularization.
PCI procedure

Approach: Rt. transfemoral, IABP Support, G/C: mach1 FL4 ST SH 8Fr, G/W; Neos Fielder
Pre dilatation; φ 2.0x20 MAVERICK2, STENT; φ 3.5x13 Cypher 22atm,
Final CAG
Summary of the procedure

Stabilizing the hemodynamic status during procedure under IABP support.
Using Judkins type guiding catheter with sideholes and keeping coaxial alignment
Retraction of the guiding catheter 1-2 cm into the aorta prior to balloon inflation and stenting
The proximal 1-2 mm tip of the stent extended into aorta and postdilated to make flarelike appearance
Control CAG (2nd PCI)

Proximal LAD; CTO, RCA → LAD collateral (+), RCA; STENT ISR (-)
IVUS (Diagonal branch)

Division of Cardiology, Cardiovascular Center, Hokkaido Social Insurance Hospital
Antegrade Approach

Pararellel Wire Technique; TRANSIT + Miracle12 / TRANSIT + Confienza Pro12

Division of Cardiology, Cardiovascular Center, Hokkaido Social Insurance Hospital
Pre Dilatation

LAD B/C; φ 2.0x20 Ryujin PLUS
IVUS (LAD)
IVUS (Diagonal branch)

Guide Wire ; Confienza Pro12

Division of Cardiology, Cardiovascular Center, Hokkaido Social Insurance Hospital
POBA (Diagonal branch)

LAD B/C; φ2.0x20 Ryujin PLUS
IVUS (Diagonal branch)

Pre Post
Kissing STENTing

LAD; φ3.0x33 Cypher, Diagonal; φ2.5x28 Cypher 16atm, FINAL KBT; SDS 20atm
Final IVUS (LAD)
Final IVUS (Diagonal branch)
Final CAG
PCI for unprotected LMT Complicated by CHF

- still challenging and controversial
- may cause hemodynamic collapse if failed
- needs precise estimation of viable myocardium
- Severe MR cannot be reversed merely by PCI revascularization

- In the case of ACS, PCI is the quickest method to establish revascularization for critical myocardial ischemia
- High success rate and long term patency with DES in complicated lesions including CTO make it possible to establish complete revascularization by PCI