Cardiovascular Outcomes Through Statin Treatment

: Evidence based Outcomes

Dong-Ju Choi, MD, PhD
Cardiovascular Center
Bundang Hospital
Seoul National University

The Framingham Study: Relationship Between Cholesterol and CHD Risk

Primary Prevention Trials

Why lower?

Post CABG Trial: Aggressive Lipid Lowering Had More Favorable Outcomes Than Moderate Lipid Lowering

^{*}*P*≤.001 vs moderate therapy group

4S: Lower Cardiac Event Rates With Lower On-Treatment LDL-C

Pedersen T. Eur Heart J. 1998;19(suppl M):M15-M21.

HPS: Decrease in Major Vascular Events Regardless of Baseline Cholesterol

HPS LDL-C Subgroup Analysis

Prove the lower is the better

:Atorvastatin landmark studies

Intensive Lipid lowering: Consistent Clinical Benefits at On-Treatment LDL-C < 100 with Atorvastatin

Study	Patient population	Follow-up LDL-C, mg/dL (mmol/L)		1º end point	<i>P</i> -value
		Atorvastatin	Comparator	reduction (%)	
2º prevention					
PROVE-IT	ACS	62 (1.6)	95 (2.5) pravastatin	16*	.005
MIRACL	ACS	72 (1.9)	135 (3.5) placebo	16*	.048
ALLIANCE	CHD	95 (2.5)	110 (2.8) usual care	17 [†]	.02
AVERT	CHD	77 (2.0)	119 (3.1) angioplasty	36 [§]	.048
1º prevention					
ASCOT	Hypertension	87 (2.3)	133 (3.5) placebo	36 [‡]	.0005
CARDS	Diabetes	68 (1.8)	119 (3.1) placebo	37 [†]	.001

LDL-C values for PROVE-IT are medians; all other LDL-C values are means

^{*} All-cause mortality + major CV event; † Major CV event; ‡ Nonfatal MI + fatal CHD; § Ischemic event

MIRACL: Myocardial Ischemia Reduction With Aggressive Cholesterol Lowering

Treatment With Atorvastatin 80 mg/dL Reduces Recurrent Ischemia Events in First 16 Weeks

PROVE-IT: Intensive Therapy Vs Standard Lipid-Lowering Therapy

Study Design

Primary end point: Composite of death, MI, documented unstable angina requiring hospitalization, revascularization (>30 days after randomization), or stroke

PROVE-IT: Changes From Baseline LDL-C

Note: Median changes in LDL-C may differ from prior thats.

- 25% of patients on statins prior to acute coronary syndrome event
- Acute coronary syndrome response lowers LDL-C from true baseline

PROVE IT: A Major Cardiovascular Event Or Death From Any Cause Primary End Point

Adapted from Cannon et al. *N Engl J Med.* 2004;350:1495, with permission. Ray and Cannon. *Am J Cardiol.* 2005;96(suppl):54F.

ALLIANCE: Aggressive Lipid Lowering Vs Usual Care

Study Design

- 2442 patients enrolled in 16 MCOs or VAs in the US
- History of CHD
- LDL-C:
 - 130 to 250 mg/dL (3.4 to 6.5 mmol/L) not on lipid-lowering therapy
 - 110 to 200 mg/dL (2.8 to 5.2 mmol/L) receiving lipid-lowering therapy

Atorvastatin 10 to 80 mg/day Randomized, no wash-out Ongoing usual care*

4-year follow-up

Primary end point:

- Time to occurrence of composite end point:
 - cardiac death
 - nonfatal MI
 - resuscitated cardiac arrest
 - cardiac revascularization
 - unstable angina requiring hospitalization

*Usual care is the lipid treatment program prescribed by the patient's primary physician and could include diet, behavior modification, and antihyperlipidemic medication (including atorvastatin after 1997)

ALLIANCE: Time to Primary Cardiovascular Outcome

Relative risk reduction = 17%

ASCOT: Primary Prevention in Patients at Modest Risk of CHD

Primary end point: Composite of fatal CHD and nonfatal MI

Highlighted boxes indicate patients enrolled in lipid-lowering arm

ASCOT: Reductions in Total and LDL Cholesterol

ASCOT: Incidence of Nonfatal MI and Fatal CHD

REVERSAL and ARBITER: Vascular Benefits With Atorvastatin at On-Treatment LDL-C < 100 mg/dL

Study	Mean follow-up LDL-C, mg/dL (mmol/L)		Atherosclerosis change	<i>P</i> -value
	Atorvastatin	Comparator		
REVERSAL	79 (2.0)	110 (2.8) pravastatin	Percent change in TAV -0.4% vs 2.7%	.02
ARBITER	76 (2.0)	110 (2.8) pravastatin	Change in mean carotid IMT -0.034 mm vs 0.025 mm	.03

REVERSAL: Reversing Atherosclerosis With Aggressive Lipid Lowering

Study Design

Patient population:

- Patients requiring diagnostic coronary angiography for a clinical indication
- Age 30-75 years
- LDL-C 125-210 mg/dL (3.2-5.4 mmol/L)
- Triglycerides <600 mg/dL (<6.8 mmol/L)</p>

2-week placebo run-in Randomization 654 patients **Double-blind period**

Atorvastatin 80 mg/day

Pravastatin 40 mg/day

18-month follow-up

Primary end point:

Percent change from baseline in total atheroma volume of the target coronary artery as measured by IVUS

REVERSAL: Method For Measurement Of Intravascular Ultrasound Images

REVERSAL: Percent Change in Total Atheroma Volume

TAV = total atheroma volume.

NCEP ATP III (Updated) and ADA: Treatment Thresholds and Goals in Patients with Diabetes

	Drug Therapy	LDL-C Goal (mg/dL)	
NCEP ATP III			
CHD or CHD risk equivalent (High risk)	≥100*	<100 (Optional: <70*)	
ADA			
With overt CVD	All patients with diabetes	30-40% reduction <100 <70 an option	
Without overt CVD	>40 y 30% to 40% LDL-C reduction, regardless of baseline level	<100	
	<40 y + CVD risk factors or long duration of diabetes	<100	

American Diabetes Association. Diabetes Care. 2005;28(suppl 1):S4-S36. Grundy SM, et al. Circulation. 2004;110:227-239.

^{*}Updated guidelines, per NCEP ATP III White Paper (Grundy et al)

More evidences for benefit of treating to "new target"

The Treating to New Targets (TNT) : Rationale

TNT is the first randomized clinical trial to respectively assess the efficacy and safety of treating patients with stable CHD to LDL-C levels well below 100 mg/dL

Patients and Sites

A total of 10,001 patients from 256 sites in 14 countries worldwide were randomized

Study Design

1-8 weeks

- CHD
- LDL-C: 130-250 mg/dL (3.4-6.5 mmol/L)
- Triglycerides ≤600 mg/dL (≤6.8 mmol/L)

8 weeks

Primary efficacy outcome measure:

- Time to occurrence of a major CV event:
 - CHD death
 - Nonfatal, non-procedure-related MI
 - Resuscitated cardiac arrest
 - Fatal or nonfatal stroke

Median follow-up = 4.9 years

LaRosa JC, et al. N Engl J Med. 2005;352:1425-1435.

Changes in LDL-C By Treatment Group

Primary Efficacy Outcome Measure: Major Cardiovascular Events*

^{*}CHD death, nonfatal non-procedure-related MI, resuscitated cardiac arrest, fatal or nonfatal stroke

Stroke (Fatal or Monfatal)

Secondary Efficacy Outcome Measure

Nonfatal MI or CHD Death

Primary and Secondary Efficacy Outcome Measures: Hazard Ratios

^{*}CHD death, nonfatal non-procedure-related MI resuscitated cardiac arrest.

All-Cause, Non-CV, and CV Mortality in Secondary Prevention Studies

4S: Scandinavian Simvastatin Survival Study Group. *Lancet.* 1994;344:1383-1389; **CARE:** Sacks FM, et al. *N Engl J Med.* 1996;335:1001-1009; **LIPID:** The LIPID Study Group. *N Engl J Med.* 1998;339:1349-1357; **HPS:** HPS Collaborative Group. *Lancet.* 2002;360:7-22; **TNT:** LaRosa JC, et al. *N Engl J Med.* 2005;352:1425-1435.

Conclusions of TNT

- □ Treatment with atorvastatin 80 mg to an LDL-C of 77 mg/dL provided significant clinical benefit to patients with stable CHD currently perceived to be well controlled at levels around 100 mg/dL (2.6 mmol/L)
- □ Benefits observed with atorvastatin 80 mg included highly significant reductions in the risk of **coronary** events and stroke
- □ This improved clinical outcome was achieved without significant additional safety risk

Subgroup Analysis in Patients With Diabetes

Diabetes and CVD: What We Knew

OASIS registry: Prospectively collected from patients hospitalized with unstable angina or non–Q-wave MI **P*<.01, ***P*<.001 vs patients without diabetes

TNT Study Design: Post-hoc Analysis of Patients With Diabetes

Diabetes criteria:

 Cohort includes patients with previous history of diabetes at screening

Time to First Major Cardiovascular Event in Patients With Diabetes

Hazard Ratios in Patients With and Without Diabetes: Secondary Efficacy Outcomes

Major Cardiovascular Event Rate in Patients With Diabetes by Glycemic Control

^{*}P=.30 for heterogeneity.

Subgroup Analysis in Patients With Metabolic Syndrome

TNT Study Design: Post-hoc Analysis of Patients With Metabolic Syndrome

Metabolic syndrome was based on the updated NCEP ATP III definition,¹ and was defined as ≥3 of the following prior to open-label run-in:

- Waist circumference: Men ≥40 inches (102 cm); Women ≥35 inches (88 cm)*
- Triglycerides ≥150 mg/dL (≥1.7 mmol/L)
- HDL-C: Men <40 mg/dL (<1.0 mmol/L); Women <50 mg/dL (<1.3 mmol/L)
- Blood pressure ≥130/≥85 mm Hg
- Fasting glucose ≥100 mg/dL (≥5.6 mmol/L)

Time to First Major Cardiovascular Event in Patients with Metabolic Syndrome (MetS)

Time to First Major Cardiovascular Event By Metabolic Syndrome Status

Univariate Effects of Individual Characteristics of MetS on Risk of Major Cardiovascular Events

P*<.05, *P*<.0001 MetS = metabolic syndrome.

Deedwania P, et al. Lancet 2006;368:919-928.

Analysis of Effects on Cerebrovascular Events

TNT Study Design: Analysis of Cerebrovascular Events

Predefined secondary end point:

- Time to occurrence of a cerebrovascular event, defined as fatal or nonfatal stroke, or transient ischemic attack (TIA)
 - Strokes were classified as ischemic, hemorrhagic, embolic, or unknown*

*Using Systolic Hypertension in the Elderly Program criteria.

Time to First Stroke (Fatal or Nonfatal)

Current guidelines HF

- √ 54,960 Medicare hospitalized pt
- ✓ discharge Dx of HF with age >65
- ✓ ischemic: 58%, EF < 40%: 48%,
 </p>
- ✓ Use of statin: 17 %

By Follow the ATP-III guideline in HF patients

Wait for the results of ongoing trials

Effect of High-Dose Atorvastatin on Hospitalization for HF

Subgroup Analysis of the Treating to New Targets (TNT) Study

TNT: Study Design

Baseline

n=5,006

n=4,995

- O CHD
- O LDL-C: 130-250 mg/dL (3.4-6.5 mmol/L)
- O Triglycerides ≤600 mg/dL (≤6.8 mmol/L)

Double-blind Period

n=10,001

LDL-C: <130 mg/dL (<3.4 mmol/L)

Atorvastatin 10 mg LDL-C target: 100 mg/dL (2.6 mmol/L)

Atorvastatin 80 mg LDL-C target: 75 mg/dL (1.9 mmol/L)

Median Follow-up = 4.9 Years

Screening and Wash-out n=18,469 Atorvastatin 10 mg 1–8 Weeks Open-label Run-in n=15,464 Atorvastatin 10 mg

Primary Efficacy Outcome Measure

- Time to occurrence of a major CV event:
 - CHD death
 - Nonfatal, non–procedure-related MI
 - Resuscitated cardiac arrest
 - Fatal or nonfatal stroke

Secondary Efficacy Outcome Measure

- O Any cardiovascular event:
 - Major coronary event*
 - Any coronary event
 - Cerebrovascular event
 - Hospitalization for CHF
 - Peripheral arterial disease
- All cause mortality

*CHD death, nonfatal non-procedure-related MI, resuscitated cardiac arrest

Baseline Patient Characteristics (2)

	History of HF (n=781)	No history of HF (n=9,220)	<i>P</i> value
Comorbidities (%)			
 Hypertension 	67	53	<0.0001
Diabetes Mellitus	27	14	<0.0001
Peripheral arterial	24	11	<0.0001
disease			
Prior MI	74	57	<0.0001
Stroke	11	5	<0.0001
Medications (%)			
- ACE-I	61	26	<0.0001
- ARB	10	5	<0.0001
Diuretics	54	12	<0.0001

Hospitalization for HF

	Total	Pt with history of HF	Pt without history of HF
n	10,001	781	9,220
Hospitalization (%)	2.86	14.1	1.9

Predictors of Hospitalization for HF

Effect of study treatment on HF hospitalization

Proportion of patients in the 10- and 80-mg arms of TNT hospitalized with HF during follow-up

Effect of study treatment on HF hospitalization

Proportion of patients with and without a history of HF in the 10- and 80-mg arms of TNT experiencing hospitalization for HF during follow-up

Relationship between HF hospitalization and preceding ischemic coronary event

50% 100%

Summary of TNT substudy

- □ Patients with stable CHD and diabetes experienced a 25% reduction in risk of major CV events with atorvastatin 80 mg vs atorvastatin 10 mg
- □ A similar reduction in risk was observed in metabolic syndrome patients without diabetes, with atorvastatin 80 mg yielding a significant 30% relative risk reduction vs atorvastatin 10 mg
- □ Intensive lipid lowering with atorvastatin 80 mg/day reduced the incidence of both first stroke and first cerebrovascular event by an additional 20-25% compared with the 10 mg/day dose.
- □ In the TNT trial, treatment with atorvastatin 80 mg/day significantly reduced the risk of hospitalization due to HF compared with 10 mg in patients with stable CHD

ARMYDA-ACS trial

Randomized Trial of Atorvastatin for Reduction of Myocardial Damage During Coronary Intervention

Results From the ARMYDA (Atorvastatin for Reduction of MYocardial Damage during Angioplasty) Study

Vincenzo Pasceri, MD, PhD; Giuseppe Patti, MD; Annunziata Nusca, MD; Christian Pristipino, MD; Giuseppe Richichi, MD; Germano Di Sciascio, MD; on behalf of the ARMYDA Investigators

Background—Small myocardial infarctions after percutaneous coronary intervention have been associated with higher risk of cardiac events during follow-up. Observational studies have suggested that statins may lower the risk of procedural myocardial injury. The aim of our study was to confirm this hypothesis in a randomized study.

Methods and Results—One hundred fifty-three patients with chronic stable angina without previous statin treatment were enrolled in the study. Patients scheduled for elective coronary intervention were randomized to atorvastatin (40 mg/d, n=76) or placebo (n=77) 7 days before the procedure. Creatine kinase-MB, troponin I, and myoglobin levels were measured at baseline and at 8 and 24 hours after the procedure. Detection of markers of myocardial injury above the upper normal limit was significantly lower in the statin group versus the placebo group: 12% versus 35% for creatine kinase-MB (P=0.001), 20% versus 48% for troponin I (P=0.0004), and 22% versus 51% for myoglobin (P=0.0005). Myocardial infarction by creatine kinase-MB determination was detected after coronary intervention in 5% of patients in the statin group and in 18% of those in the placebo group (P=0.025). Postprocedural peak levels of creatine kinase-MB (2.9±3 versus 7.5±18 ng/mL, P=0.007), troponin I (0.09±0.2 versus 0.47±1.3 ng/mL, P=0.0008), and myoglobin (58±36 versus 81±49 ng/mL, P=0.0002) were also significantly lower in the statin than in the placebo group.

Conclusions—Pretreatment with atorvastatin 40 mg/d for 7 days significantly reduces procedural myocardial injury in elective coronary intervention. These results may influence practice patterns with regard to adjuvant pharmacological therapy before percutaneous revascularization. (Circulation, 2004;110:674-678.)

BACKGROUND

❖ The original ARMYDA trial demostrated that 7-day pretreatment with atorvastatin (40 mg/day) confers 81% risk reduction of peri-procedural MI in patients with <u>Stable Angina</u> undergoing <u>elective</u> PCI

ARMYDA-ACS trial

Inclusion criteria:

✓ NSTE-ACS undergoing early angiography (<48 hrs)

Exclusion criteria:

- ✓ STEMI
- ✓ ACS with high risk features warranting emergency angiography
- ✓ Previous or current statin therapy
- ✓ LVEF <30%
- **✓** Contraindications to statins (liver or muscle disease)
- ✓ Severe renal failure (creatininine >3 mg/dl)

ARMYDA-ACS trial: Study design

ARMYDA-ACS trial: Study end points

Primary end point:

Incidence of major adverse cardiac events (MACE: death, MI, TVR) from the procedure up to 30 days

MI definition:

- If normal baseline levels of CK-MB: post-procedural increase of CK-MB >2 times above UNL, according to the consensus statement of the Joint ESC/ACC Committee for the Redefinition of Myocardial Infarction for clinical trials on coronary intervention.
 - If elevated baseline levels of CK-MB: subsequent rise of >2 times in CK-MB from baseline value

Secondary end points:

- ✓ Any post-procedural increase of markers of myocardial injury above UNL (CK-MB, troponin-I, myoglobin)
- ✓ Post-PCI variations from baseline of CRP levels in the 2 arms

ARMYDA-ACS trial Composite primary end-point (30-day death, MI, TVR)

ARMYDA-ACS: Actuarial Survival curves

ARMYDA-ACS

Individual and Combined Outcome Measures of the Primary End Point at 30 days

ARMYDA-ACS: Secondary end point Cardiac markers elevations

ARMYDA-ACS: Odds Ratio for 30-day MACE

Summary of ARMYD-ACS

The ARMYDA-ACS trial indicates that even short-term pretreatment with atorvastatin may improve outcomes in patients with ACS undergoing early invasive strategy.

Conclusions

- ☐ The clinical trials provide substantial support for the institution of high-dose statin therapy in various clinical settings in the primary and secondary prevention of cardiovascular disease.
- ☐ In an analysis of high-dose statin therapy in the setting of ACS, diabetes mellitus, metabolic syndrome, cerebrovascular disease and heart failure demonstrated reduction in mortality and morbidity.
- ☐ Use of high-dose statins before intervention in patients with ACS may be benificial.