Partnership Sessions with International Societies: Interesting PCI Cases from Malaysia

TCTAP 2013 23<sup>rd</sup> April 2013 1930-1945

#### PCI in small vessels:

The different modalities of currently available therapies

Ramesh Singh Veriah
University Malaya Medical Centre
Kuala Lumpur, Malaysia

## No disclosures

### Small vessels

- A vessel that can be treated with a balloon or stent with a diameter ≤2.75 mm
- Seen usually in diabetics and female patients

## True Small Vessel:

A vessel that perfuses small amount of myocardium.





## False Small Vessel



## LAD size by IVUS



## Multiple factors compound risk of adverse events in small vessel diffuse disease



Reduced success rate
Increase complication rate
Increase restenosis rate/MACE

#### Percutaneous revascularization in small coronary arteries



### Independent Risk Factors for Restenosis



### PCI in Small Vessel

#### Malaysian Data

- NCVD-PCI 2007-2009
- SV defined as lesion with one or more stents ≤
   2.75 mm in diameter

## PCI in Small Vessel

#### Malaysian Data

|              | Small vessel | Large vessel |
|--------------|--------------|--------------|
| Age          |              |              |
| N            | 6942         | 6570         |
| Mean (SD)    | 57.4 (9.9)   | 57.0 (10.5)  |
| Median (IQR) | 57.1 (13)    | 56.9 (15)    |
| Min, Max     | 23.4, 90.6   | 22.0, 95.0   |

|                               | Small vessel | Large vessel |
|-------------------------------|--------------|--------------|
| Procedure, N                  | 6944         | 6577         |
| Extent of coronary disease, % |              |              |
| Single vessel disease         | 40.1         | 55.6         |
| Multiple vessel disease       | 59.1         | 43.3         |
| LMS                           | 0.8          | 0.8          |
| Graft                         | 1.0          | 1.5          |

|                                 | Small vessel | Large vessel |
|---------------------------------|--------------|--------------|
| Procedure, N                    | 6944         | 9668         |
| Co-morbidity, %                 |              |              |
| Current smoker                  | 17.0         | 21.1         |
| Dyslipidaemia                   | 76.6         | 71.7         |
| Hypertension                    | 75.5         | 70.3         |
| Diabetes                        | 51.9         | 41.1         |
| Family history of premature CVD | 19.7         | 18.5         |
| MI history                      | 41.9         | 42.9         |
| Documented CAD                  | 57.6         | 54.0         |
| New onset of angina             | 22.6         | 24.8         |
| History of heart failure        | 4.3          | 3.7          |
| Cerebrovascular Disease         | 1.5          | 1.2          |
| Peripheral vascular Disease     | 1.0          | 0.8          |
| Chronic renal failure           | 7.3          | 6.1          |

|                    | Small vessel | Large vessel |
|--------------------|--------------|--------------|
| Lesion, N          | 8188         | 9668         |
| Lesion location, % |              |              |
| RCA                | 19.9         | 35.5         |
| PDA                | 1.2          | 0.2          |
| PLV                | 1.2          | 0.4          |
| LM                 | 1.4          | 2.9          |
| LCx                | 17.8         | 12.1         |
| OM                 | 5.5          | 1.5          |
| LAD                | 50.0         | 45.0         |
| D                  | 2.1          | 0.4          |
| LIMA               | 0.2          | 0.1          |
| RIMA               | 0            | 0            |
| SVG                | 0.8          | 1.7          |
| RAD                | 0            | 0            |

|                                          | Small vessel              | Large vessel              |
|------------------------------------------|---------------------------|---------------------------|
| Lesion, N                                | 8188                      | 9668                      |
| Lesion type, %                           |                           |                           |
| Α                                        | 9.6                       | 13.7                      |
| B1                                       | 23.3                      | 30.6                      |
| B2                                       | 24.8                      | 23.0                      |
| С                                        | 41.6                      | 32.0                      |
| Missing                                  | 0.7                       | 0.7                       |
|                                          |                           |                           |
|                                          | Small vessel              | Large vessel              |
| Lesion, N                                | Small vessel<br>8188      | Large vessel 9668         |
|                                          |                           |                           |
| Lesion, N                                | 8188                      | 9668                      |
| Lesion, N Acute closure, %               | <b>8188</b><br>0.4        | <b>9668</b> 0.3           |
| Lesion, N Acute closure, % Dissection, % | 8188<br>0.4<br>5.4        | <b>9668</b> 0.3 3.2       |
| Lesion, N Acute closure, % Dissection, % | 8188<br>0.4<br>5.4<br>0.1 | 9668<br>0.3<br>3.2<br>0.3 |

|                                 | Small vessel | Large vessel |
|---------------------------------|--------------|--------------|
| Procedure, N                    | 6944         | 6577         |
| Complication after procedure, % |              |              |
| Periprocedural                  | 0.4          | 0.3          |
| Emergency PCI                   | 0.3          | 0.2          |
| Bail-out CABG                   | 0.0          | 0.0          |
| Cardiogenic shock               | 0.5          | 0.4          |
| Arrhythmia                      | 0.5          | 0.5          |
| TIA/Stroke                      | 0.1          | 0.0          |
| Tamponade                       | 0.0          | 0.0          |
| Contrast reaction               | 0.0          | 0.1          |
| Heart failure                   | 0.1          | 0.1          |
| New renal impairment            | 0.2          | 0.1          |

## Restenosis Rates in RCTs of BMS vs PTCA in Small Vessels



## Multivariable Predictors of TLR

#### Non-diabetic



## Multivariable Predictors of TLR

#### Diabetic



# Insights from DIABETES TRIAL — Efficacy of SES Implantation in Diabetic Patients with Very Small Vessels (≤ 2.25 mm)

85 Patients (100 lesions) from the DIABETES Trial

|                                       | Sirolimus<br>Stent | Bare Metal<br>Stent | P Value |
|---------------------------------------|--------------------|---------------------|---------|
| No. of lesions with 9-month follow-up | 44                 | 46                  |         |
| In-segment late lumen loss (mm)       | $-0.03 \pm 0.3$    | $0.44 \pm 0.5$      | <0.001  |
| In-segment Restenosis (%)             | 9.1                | 39.1                | 0.001   |

Conclusion: SES are effective in reducing the incidence of restenosis in diabetic patients with very small vessels, without increasing the risk of stent thrombosis.

## 1-Year Clinical Outcomes: Small Vessel Subgroup

RAVEL, SIRIUS, E-SIRIUS, C-SIRIUS, DECODE and TYPHOON



## Stent Thrombosis (Protocol Definition) Through 1-Year

RAVEL, SIRIUS, E-SIRIUS, C-SIRIUS, DECODE and TYPHOON



## TAXUS IV: Impact of Vessel Size

#### Restenosis (analysis segment)



## TAXUS IV: Impact of Vessel Size

**TLR (9-month)** 



Risk ratio [95% C.I.]

#### Relationship of TVR to late loss post stenting



Mauri L, Orav JE, Kuntz RE. Circulation 2005; 111: 3435-3442

## Vascular Response to Injury



#### Is strut thickness important in small vessels



#### NOBORI VSV 2 year Composite Endpoints

#### VSV: RVD ≤2.5mm



## NOBORI VSV Stent Thrombosis at 2 Years





■Early ■Late ■Very Late

**Definite/probable ST according to ARC** 

## SEEDS

#### 6-Month ID-TVF (ID-TVF = cardiac death, MI, or ID-TVR)



A Prospective, Multicenter Registry to Evaluate Safety and Effectiveness of Everolimus Drug-Eluting Stent for Treatment of Coronary Revascularization in Chinese Patients with either Long Lesion, Small Lesion, or Multivessel Diseases



#### Stent Thrombosis (ARC def/prob) through 6 months



A Prospective, Multicenter Registry to Evaluate Safety and Effectiveness of Everolimus Drug-Eluting Stent for Treatment of Coronary Revascularization in Chinese Patients with either Long Lesion, Small Lesion, or Multivessel Diseases

#### COMPARE II trial Small Vessels Subgroup

## **Primary Endpoint**

(<2.75 mm)

Cardiac Death, MI, Clinically Indicated TVR





## COMPARE II trial Small Vessels Subgroup

## **Secondary Endpoint**

(<2.75 mm)

Cardiac Death, MI, Clinically Indicated TLR





## **Stent Thrombosis (ARC)**



**Definite/Probable ST, ARC** 

## Calcified small vessels

- Especially challenging, failed deliverability in 2-5% of cases
- Often diffuse, narrow, calcified and small caliber
- Difficult to deliver the stent
- Debulking an option
- DEB post-Rotablation if unable to DES



## Reaching Further in the Treatment of Calcified Small Vessel Disease Is Rota-DEB an Option?

#### Follow up:

Freedom
 from major
 cardiac
 adverse
 events was
 95% at 6M
 and 90% at
 12M.



#### **PEPCAD I SVD**

Treatment of Small Vessel Coronary Artery Disease by the Sequent® Please Paclitaxel coated balloon

|                                                       | Coated<br>Balloon | Coated<br>Balloon<br>+ BMS |
|-------------------------------------------------------|-------------------|----------------------------|
| Ø in-segment<br>LLL<br>(6 Months)                     | 0.16 ±0.38 mm     | 0.62 ±0.73 mm              |
| binary<br>restenosis rate<br>in-segment<br>(6 Months) | 4 / 82 (5.5%)     | 13 / 32<br>(44.8%)         |
| MI                                                    | 1 / 82 (1.3%)     | 1 / 32 (3.1%)              |
| TLR                                                   | 4 / 82 (4.9%)     | 9 / 32 (28.1%)             |
| MACE                                                  | 6.1 %             | 37.5 %                     |

## 3-year Freedom From MACE (Death, Myocardial Infarction, TLR, Stent Thrombosis)





### Small stents:

important characteristics

- More deliverable, more conformable
- Improved balloon re-wrap and less withdrawal resistance



Newer generation stents

## Conclusion

- SV PCI still a challenging subset of intervention especially in diabetics
- IVUS indicated to determine if truly SV or just diffuse disease esp prox and mid-LAD and prox-RCA lesions
- Small vessels must be prepared well prior to stenting and followed by adequate post-stenting ballooning dilation paying attention to risk of vessel perforation and dissection esp if only DEB is considered
- Procedural risk and long term risk
- Operator technique and experience



