The Future Landscape of DES: New Stent Platforms, Drug Carriers, and Recent Experiences

Eberhard Grube MD
FACC, FSCAI

HELIOS Heart Center Siegburg, Germany
Hospital Israelita Albert Einstein, São Paulo, Brazil
Stanford University, Palo Alto, California, USA
Other than that….

Drug-eluting Stents are Perfect!

AGONY
Not All Pain Is Gain.
Strategies to Improve Outcome with DES

- Improved SAFETY
- Optimal Stent Design
- Drug Duration
- Optimal Procedural Result

Improved SAFETY
DES ‘Classification’

1st Generation DES

“2nd Generation DES”

Lesion Dedicated DES
New DES Programs

- Paclitaxel BSC, Conor, Biosensors
- NO Donors Blue Medical
- Biolimus A9 Biosensors, Terumo, Devax
- Zotarolimus Zomax, Endeavor CR
- Pimecrolimus Conor, Avantac
- Melatonin Blue Medical
- Gleevec Novartis
- Everolimus Guidant
- Tacrolimus Sorin
- EPC Progenitors Orbus
- Restin-NG AVI Biopharma
- Paclitaxel Balloon B- Braun
- Bioabsorbable Guidant, Biotronik, Reva

......
Perfect Drug?

- Restenosis
- Stent thrombosis

Anti-proliferative Power
Problems with polymers...

Polymer damaged by expansion in air at room temperature

Redundant polymer

Bare areas
Advanced Approaches to Drug Release

- Bioabsorbable polymers
- Bioabsorbable stents
- Controlled polymer application
- Non polymer release
Multiple New Concepts
Illustration is an artistic rendering showing theoretical drug release; release is predominantly the direction of the vessel wall.

Caution: SymBio™ is an investigational device and is not available for sale.
Conor Medsystems, CoStar, Corio and SymBio are trademarks of Conor Medsystems. © Conor Medsystems, Inc. 2005
Res-Elution International Trial
(Abizaid, Ormston)

Vessel size: 2.5 – 3.5 mm
Lesion length: < 28 mm
n = 388 pts

Conor Sirolimus™
n = 260

Taxus™
n = 130

Primary Endpoint:
Late loss
at 9 Months
BioMatrix® III Stent Platform

Biodegradable Drug/Carrier:
- Biolimus A9® / Poly (Lactic Acid) 50:50 mix
- abluminal surface only (contacts vessel wall)
- 10 microns coating thickness
- degrades in 9 months releasing CO₂+ water

Stent Platform:
- stainless steel (112 microns)
- corrugated ring, quadrature-link™ design
- radius link enhances axial fatigue resistance

Not available for sale in the United States.
In-Segment Late Loss Across Multiple Randomized Clinical Trials

Data from trials that are not head-to-head are not intended to be comparative. SPIRIT is sponsored by Abbott. PROMUS Stent is a private-labeled XIENCE V Everolimus Eluting Coronary Stent System manufactured by Abbott and distributed by Boston Scientific Corporation; XIENCE is a trademark of Abbott Laboratories group of companies. PROMUS, TAXUS and Express² are trademarks of Boston Scientific Corporation or its affiliates. Cypher is a trademark of Cordis Corp. Endeavor is a trademark of Medtronic Vascular, Inc. For products, sponsors, and publications, refer to the Clinical Trial Glossary.
First In-Man 2:1 randomized n = 120

Biolumis A9 Eluting Stent n = 80

Control Bare Metal Stent n = 40

Primary Endpoint: Late Loss at 6 Months

6-m In Stent Late Loss

6-m IVUS % obstruction

0.74 ± 0.45 65%

0.26 ± 0.43

32 ± 18% 100%

3±2 2.5%
LEADERS Real World Randomized Study

All commers
Vessel size: 2.25 – 4.0 mm
Lesion length: no limit
n = 1700

BioMatrix™
n = 850

Cypher™
n = 850

Primary Endpoint: MACE at 9 Months

Primary Endpoint: Event-free TVF at 9 Months

STEALTH II Pivotal Study (D.Holmes)

Vessel size: 2.5 – 3.5 mm
Lesion length: 10 – 24 mm
n = 1340

BioMatrix™ II
n = 670

Taxus™
n = 670
BioMatrix Freedom Stent
Biolimus A9® Drug

- Abluminal drug coating targets blood vessel walls
- Small amounts are released into circulation

Pure Biolimus A9 impregnated in metal stent surface

Bloodstream
BioMatrix® II

Biolimus A9 Release From Freedom Stent vs. BioMatrix® II

Biolimus A9 Elution from Stents

(MEDIUM: PBS pH 7.4/Tween, 37°C)

Cumulative Release (%) vs. Time (Hrs)

- Biomatrix
- Polymerless

Sieburg
BioMatrix Freedom Stent
Biolimus A9® Drug

First-in-man: Baseline, Oct 2006
BioMatrix Freedom Stent
Biolimus A9® Drug

First-in-man:
12 months Follow-up, Sept. 2007
Endothelial Progenitor Cell Capture Coating Technology - Orbus Neich Genesis

- CD34 Antibody Layer
- Intermediate Layer
- Stent Adhering Bottom Layer
- Stent Surface
- Captured EPC Cells on Surface
JACTax Stent –Labcoat Proprietary Technology/Product

- Liberte stent coated “out of the box”
- Exclusively Abluminal JACoating (no capping)
- 20 mcg of coating/16mm stent
- Coating contains 10 mcg of DLPLA and 10 mcg paclitaxel
- Approx. 2700 microdroplet surface structures/16 mm stent
JACoating vs. Reservior - illustration

JACoating is approx. 1 micron thick vs Reservior polymer approx. 75 micron thick
The Elixir Stent
(Excella Stent + Novolimus)

Stent Design
- Cobalt-Chromium alloy
- 8 crown design for optimal scaffolding
- 0.0032” strut thickness

Controlled Release Technology
- Methacrylate polymer family
 - Durable
- Biocompatible
- History of clinical use on vascular implants dose
- Reduce dose (85 µg) and polymer load (<3 microns)
RESULTS

Quantitative Coronary Angiography

<table>
<thead>
<tr>
<th>Variables</th>
<th>Lesions (n = 15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-procedure</td>
<td></td>
</tr>
<tr>
<td>Reference vessel diameter, mm</td>
<td>2.7 ± 0.4</td>
</tr>
<tr>
<td>Lesion length, mm</td>
<td>8.7 ± 3.7</td>
</tr>
<tr>
<td>Minimum lumen diameter, mm</td>
<td>1.0 ± 0.3</td>
</tr>
<tr>
<td>Diameter stenosis, (%)</td>
<td>62.5 ± 8.6</td>
</tr>
<tr>
<td>Post-procedure</td>
<td></td>
</tr>
<tr>
<td>Minimum lumen diameter, mm</td>
<td>2.5 ± 0.3</td>
</tr>
<tr>
<td>Diameter stenosis, (%)</td>
<td>7.4 ± 9.6</td>
</tr>
<tr>
<td>Acute gain, mm</td>
<td>1.5 ± 0.3</td>
</tr>
<tr>
<td>4-month follow-up</td>
<td></td>
</tr>
<tr>
<td>Minimum lumen diameter, mm</td>
<td>2.3 ± 0.4</td>
</tr>
<tr>
<td>Diameter stenosis, (%)</td>
<td>12.5 ± 13.1</td>
</tr>
<tr>
<td>Lumen loss, mm</td>
<td>0.15 ± 0.29</td>
</tr>
<tr>
<td>Binary restenosis, n(%)</td>
<td>0</td>
</tr>
</tbody>
</table>
IVUS Volumetric Analysis
Baseline / 4 month follow-up

<table>
<thead>
<tr>
<th>IVUS variables</th>
<th>Baseline</th>
<th>4-month follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N= 15 P</td>
<td>N= 15 P</td>
</tr>
<tr>
<td>Vessel Volume (mm³)</td>
<td>251.2 ± 78.8</td>
<td>259.7 ± 86.1</td>
</tr>
<tr>
<td>Stent Volume (mm³)</td>
<td>130.1 ± 39.7</td>
<td>134.0 ± 39.5</td>
</tr>
<tr>
<td>Lumen Volume (mm³)</td>
<td>129.9 ± 39.7</td>
<td>130.8 ± 40.0</td>
</tr>
<tr>
<td>NIH Volume (mm³)</td>
<td>N/A</td>
<td>3.2 ± 2.8</td>
</tr>
<tr>
<td>% Stent Obstruction</td>
<td>N/A</td>
<td>2.7 ± 2.7</td>
</tr>
</tbody>
</table>
“MIV”

3D MicroPorous Nanofilm HydroxyHepatide (HAp)
HAp Drug Delivery System
(coated with Sirolimus)

HAp surface modification
0.6um
Stent Surface

HAp surface modification loaded with encapsulated drug formulation
0.7um
Stent Surface
Angiographic FU at 4 Months

<table>
<thead>
<tr>
<th>Variable (N=13)</th>
<th>In-Stent</th>
<th>In-Lesion</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLD, mm</td>
<td>2.34 ± 0.36</td>
<td>2.02 ± 0.37</td>
</tr>
<tr>
<td>% Diameter stenosis</td>
<td>10.4 ± 8.1</td>
<td>23.2 ± 8.7</td>
</tr>
<tr>
<td>Late lumen loss, mm</td>
<td>0.27 ± 0.27</td>
<td>0.18 ± 0.31</td>
</tr>
<tr>
<td>Restenosis*, % (n)</td>
<td>0.0 (0)</td>
<td>0.0 (0)</td>
</tr>
</tbody>
</table>

Values are expressed as mean ± standard deviation. *Defined as diameter stenosis ≥ 50% at angiographic FU.
IVUS Volumetric Analysis

Baseline / 4 month follow-up

<table>
<thead>
<tr>
<th>IVUS variables</th>
<th>Baseline</th>
<th>4-month follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N= 15 P</td>
<td>N= 15 P</td>
</tr>
<tr>
<td>Vessel Volume (mm³)</td>
<td>276.7 ±</td>
<td>276.6 ± 84.8</td>
</tr>
<tr>
<td>Stent Volume (mm³)</td>
<td>145.7 ± 14</td>
<td>142 ± 0.5</td>
</tr>
<tr>
<td>Lumen Volume (mm³)</td>
<td>145.8 ±</td>
<td>138.8 ± 33.5</td>
</tr>
<tr>
<td>NIH Volume (mm³)</td>
<td>N/A</td>
<td>4.1 ± 3.4</td>
</tr>
<tr>
<td>Mallapposition Volume</td>
<td>0.15 ± 0.5</td>
<td>0.09 ± 0.3</td>
</tr>
<tr>
<td>% Stent Obstruction</td>
<td>N/A</td>
<td>2.8 ± 2.4</td>
</tr>
</tbody>
</table>
Lesion Specific Stent Designs, e.g. for bifurcations

- AST petal
- Guidant frontier
- YMed sidekick
- Devax (+ BA9)
- "true" bifurcation designs
- sidebranch designs
Dedicated Drug Eluting Stents to specifically address the needs of lesion subsets

Devax (+ BA9) (Bifurcation)

The Xtent System (Multivessel/Multilesion)

60 mm

4 mm 4 mm
AXXENT™ Left Main Stent

- **Material:** Nitinol
- **Vessel Range:** 3.75-4.75 mm
- **Length:** 12 & 10 mm
- **Flare Diameter:** 8, 10 & 12 mm
- **4.8F Rx Delivery System**
- **Biolimus A9® coating**
XTENT Custom NX DES System

6mm CoCr segments
Lengths: 60mm & 36mm
Diameters: 2.5, 3.0 & 3.5mm

Single 6mm CoCr stent segment

Custom stent lengths are created at points of interdigitation via valve separation mechanism

6mm stent 6mm stent
<table>
<thead>
<tr>
<th>Company</th>
<th>Picture</th>
<th>Polymer/Drug</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guidant (BVS)</td>
<td></td>
<td>All biodegradable polymers (PLLA) with everolimus</td>
<td>Self expanding and balloon expandable designs.</td>
</tr>
<tr>
<td>Igaki-Tamai</td>
<td></td>
<td>PLLA; Transilast</td>
<td>Zig-zag design deployed with a heated balloon FIM Trial; 50 pts</td>
</tr>
<tr>
<td>Reva Medical</td>
<td></td>
<td>Poly (DTE carbonate) with iodine for radiopacity</td>
<td>Design has ratchet links for deployment</td>
</tr>
<tr>
<td>Biosensors</td>
<td></td>
<td>Poly (L or DL) lactide with BA9</td>
<td>Self expanding stent with a retractable sheath delivery catheter</td>
</tr>
</tbody>
</table>
Absorbable DES
BVS Everolimus Eluting Stent
ABSORB Study
BVS Everolimus Eluting Stent

<table>
<thead>
<tr>
<th>Event</th>
<th>30 days</th>
<th>6 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiac Death (%)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MI (%)</td>
<td>0</td>
<td>3.3</td>
</tr>
<tr>
<td>Q-wave MI</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Non Q-wave MI</td>
<td>0</td>
<td>3.3</td>
</tr>
<tr>
<td>Ischemia Driven TLR (%)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ischemia Driven MACE (%)</td>
<td>0</td>
<td>3.3</td>
</tr>
</tbody>
</table>

n=30

Serruys, i2 2007
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instent Late Loss (mm)</td>
<td>0.44 +/- 0.35</td>
</tr>
<tr>
<td>Prox Late Loss (mm)</td>
<td>0.25 +/- 0.32</td>
</tr>
<tr>
<td>Distal Late Loss (mm)</td>
<td>0.25 +/- 0.23</td>
</tr>
<tr>
<td>Diameter Stenosis (%)</td>
<td>27 +/- 14</td>
</tr>
<tr>
<td>Persisting Incomplete Apposition</td>
<td>4/26</td>
</tr>
<tr>
<td>Late Acquired Incomplete Apposition</td>
<td>7/26</td>
</tr>
<tr>
<td>∆ Vessel Area (%)</td>
<td>-0.4</td>
</tr>
<tr>
<td>∆ Stent Area (%)</td>
<td>-11.7</td>
</tr>
<tr>
<td>∆ Lumen Area (%)</td>
<td>-16.6</td>
</tr>
<tr>
<td>NIH Area (mm2)</td>
<td>0.3</td>
</tr>
<tr>
<td>%Volume obstruction</td>
<td>5.5</td>
</tr>
</tbody>
</table>
REVA Bioresorbable Stent

- Fully bioresorbable coronary stent system
- Integral bioresorbable drug-elution coating
- Paclitaxel-eluting
SVG / Thin Film Program

SESAME eNitinol™ Covered Stent for SVG Therapy
A stent wrapped with ultra-thin polymer mesh sleeve, knitted to the external surface
• A stent wrapped with a micron level fiber mesh
• 10-20 μm single, knitted PET fiber providing flexibility and strength
• ~180x150 μm apertures
• Same look and feel as a standard stent

Struts: (80-100 microns)
MGuard (Inspire-MD) – Case Example

Mesh

Struts

Post

Siegburg
<table>
<thead>
<tr>
<th>MGuard</th>
<th>InspireMD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device description</td>
<td>Stent wrapped with a micron level knitted sleeve</td>
</tr>
<tr>
<td>Apertures size</td>
<td>150 x 180 microns</td>
</tr>
<tr>
<td>Fiber Thickness</td>
<td>10-20 microns</td>
</tr>
<tr>
<td>Indication</td>
<td>Coronaries</td>
</tr>
<tr>
<td>Approval status</td>
<td>CE Mark</td>
</tr>
</tbody>
</table>
Potential applications

- Drug eluting mesh: An efficient drug delivery platform providing uniform coverage.
- Carotid: Protection during and post procedure
- Peripheral
CardioMind Sparrow™ Stent Delivery System:
“Stent-in-a-Wire” .014” Guidewire Design

Investigational Device, Not for Sale in the US
CARE I
6 Month QCA Results

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Aggregate (n=20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-stent % DS</td>
<td>38.12±26.77</td>
</tr>
<tr>
<td>In-segment % DS</td>
<td>39.87±24.51</td>
</tr>
<tr>
<td>In-stent MLD (mm)</td>
<td>1.35±0.60</td>
</tr>
<tr>
<td>In-segment MLD (mm)</td>
<td>1.31±0.54</td>
</tr>
<tr>
<td>In-stent LLL (mm)</td>
<td>0.73±0.57</td>
</tr>
<tr>
<td>In-segment LLL (mm)</td>
<td>0.61±0.51</td>
</tr>
<tr>
<td>Binary Restenosis</td>
<td>20% (4/20)</td>
</tr>
<tr>
<td>Company</td>
<td>Stent</td>
</tr>
<tr>
<td>------------------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>Abbott Vascular</td>
<td>Xience V</td>
</tr>
<tr>
<td></td>
<td>ZoMaxx</td>
</tr>
<tr>
<td>Biosensors International</td>
<td>Axxion</td>
</tr>
<tr>
<td></td>
<td>BioMatrix</td>
</tr>
<tr>
<td>Boston Scientific</td>
<td>Promus (equivalent to XIENCE V)</td>
</tr>
<tr>
<td>Conor Medsystems</td>
<td>CoStar</td>
</tr>
<tr>
<td>Devax</td>
<td>Axxess (bifurcated)</td>
</tr>
<tr>
<td>JW Medical Systems</td>
<td>Excel</td>
</tr>
<tr>
<td>Medtronic</td>
<td>Endeavor</td>
</tr>
<tr>
<td>OrbusNeich</td>
<td>Genous Bio-engineered R Stent</td>
</tr>
<tr>
<td>Sahajan and Medical Technologies</td>
<td>Infinnium</td>
</tr>
<tr>
<td>Sorin Biomedica Cardio</td>
<td>Janus Flex</td>
</tr>
<tr>
<td>Xtent</td>
<td>Custom NX</td>
</tr>
</tbody>
</table>
There are several additional new stars which will play an important role in the future; but first they have to prove their benefit in carefully conducted adequate studies.