MIV Drug Delivery Technologies PTCA Registry India 2008

Raoul Bonan, MD

Disclosures:Consultant MIV TherapeuticsSAB member MIV Therapeutics

MIV Drug Delivery Technologies

Polymer Free

- Smooth HAP
- MicroPorous HAp
- NanoPorous HAp
- Solid lipids
- Liquid lipids
- Liposomes

Focus Technologies

NanoPorous HApLipid formulation

The VESTASYNCTM DES

- Stent platform:
- Surface modification:
- Drug:
- Dose:
- Formulation:
- Encapsulation:
- Polymer free:
- Drug elution:
- Strut thickness:

Co Cr Thin Strut NanoPorous HAp Sirolimus 57 micrograms* Lipids Yes Yes > 30 days< 66 microns (including coating)

* VESTASYNC: 57ug/19mm stent or 3.0ug/mm Vs. Cypher: 140ug/19mm stent or 7.4 ug/mm

Exploiting A Massive Technology Advantage

Thin Struts No Polymers Low Drug Dose Complete Healing Competitive Efficacy Excellent Deliverability Short Anti-Platelet Therapy

A Drug Eluting Stent With The Safety Profile And Deliverability of A Bare Metal Stent

25% Thinner Struts Than Xience

Unmatched Surface Finish, Coating Integrity, Flexibility, and Deliverability

A unique technique was developed to coat the entire HAp depth. This technique produces uniform drug loading with excellent surface morphology and a loading variability under 3%.

Can Other DES Do This?

VESTASYNCTM Comprises Three Core Technologies Protected By Over 50 Patents

- Ultra-thin strut Co Cr stent platform
- NanoPorous HAp surface modification
- Polymer-free lipid-based drug delivery formulation

VESTASYNCTM Compares Favorably With Leading BMS

Brand	VESTASYNC™	Vision	Driver
Company	Biosync	Guidant	Medtronic
Strut Thickness	0.065 mm	0.081 mm	0.091 mm
No of Cells	8	7	10
Crossing profile	0.98 mm	0.99 mm	1.117 mm
Stent Material	Co-Cr	Co-Cr	Co-Ni

MIV HAp Is An Ideal Stent Coating

- A large body of preclinical data supporting the use of MIV HAp as a stent coating
 - Positive 40/100/400 million cycle fatigue life test
 - Excellent toxicology and thrombogenicity studies
 - Multiple animal studies at 1, 3 and 6 (GLP) months confirm safety
- Unlike traditional HAp, MIV HAp does not separate from the underlying substrate and is extremely flexible

Core invention is the ability to load a sufficient quantity of drug into a HAp coating that is within its flexibility band

Excellent HAp Pre-Clinical Results

NanoFilm Preliminary Safety: Rabbit Study

- Cape Town, South Africa
- Conclusion: HAp is safe and biocompatible in animals
- NanoFilm Preliminary Safety: Porcine Study
 - The Methodist Hospital and Texas Heart Institute
 - 1 month, 3 month and 6 month porcine studies completed
 - Conclusion: HAp is biocompatible and safe in animals.

MicroPorous Preliminary Study: Porcine Study

- Erasmus University, Rotterdam, The Netherlands: 28 day study
- Conclusion: HAp is biocompatible and safe in animals

Flow Chamber Thrombogenicity Test

- The Methodist Hospital and Texas Heart Institute
- Conclusion: No significant difference between SS, CoCr, MP, NF, SEMP

Encapsulated Drug Delivery

- New concept for delivering drug to coronary arteries
- Achieved by the release of nano, micro, and macro capsules from the stent

Improves safety and broadens scope of action

- Improves the uptake drug by local cells
- Targets the delivery of drug against specific cells
- Reduces amount of drug required to achieve desired effect
- Houses drug in a protected capsule protecting surrounding tissue
- Amplify or suppress the different mechanisms of action of a single drug at different time points in the elution curve
- Provides a hydrophobic matrix to deliver hydrophilic drugs

In Vitro Capsule Formation

30 minutes post emersion in PBS

Excellent Morphometric Data

VESTASYNCTM		Í	Cypher			
Injury Score	S/A Ratio	NI Stent (um)		Injury Score	S/A Ratio	NI Stent (um)
0.3 ± 0.5	1.1 ± 0.1	236 ± 93		0.4 ± 0.5	1.1 ± 0.1	282 ± 102
		N S S S S S S S S S S S S S S S S S S S				

At 28 days the VESTASYNC showed good neointimal healing with complete strut coverage and little inflammation versus incomplete healing with uncovered struts and high levels of inflammation for the Cypher Source: van der Giessen EUROPCR 2007

75% Less Fibrinoid Material

Minimal Fibrinoid (.03%)

Excessive Fibrinoid (.12%)

At 28 Days the VESTASYNC exhibited a statistically significant (P=0.004) lower amount of fibrinoid material, a marker for delayed healing Source: van der Giessen EUROPCR 2007

BMS-Like Platelet Activation

Source: Kaluza TCT 2007

BMS-Like Platelet Activation

17

BMS-Like Platelet Activation

Positive VESTASYNC-I FIM Study

	De novo lesions in native coronary arteries						
RVD: 3.0 - 3.5 mm							
Lesion length: ≤ 14 mm							
	Ster	nt diameters	: 3.0 and 3.5mm				
Stent length: 19mm							
	1	Pre dilatatior	ns mandatory				
	PI: Ale	xandre A	bizaid MD, I	PhD			
Clinical follow-up							
	1 m	4 m	6 m	9 m	12 m	24m	
QCA / IVUS follow-up							
Primary Endpoint		In-ste	In-stent lumen loss at four-month follow-up by QCA				
Secondary Endpoints MACE up to 24 months Acute success TLR and TVR up to 24 months In-stent and in-segment NI <u>H volume at 4 months</u>			s				
Single Center: Brazil (Instituto Dante Pazzanese)		Dual	Dual anti-platelet therapy for 5 months				

Positive VESTASYNC-I FIM Study

15 consecutive patients April/2007

De novo lesions in native coronary arteries Diameter ≤ 3.5 mm Lesion Length ≤ 14 mm

Stent deployment (after mandatory predilatation)

Clinical follow-up at 1, 4, 6, 9, 12 and 24 months

Angiographic follow-up at 4 months (QCA/IVUS) Angiographic follow-up at 9 months (QCA/IVUS)

Patient Demographics

Characteristics	N = 15 Patients
Mean age, years	63,8
Female gender, n(%)	6 (40%)
Hypertension, n(%)	9 (60%)
Dislipidemia, n(%)	7 (47%)
Diabetes, n(%)	5 (33%)
Smoking, n(%)	7 (47%)
Family history of CAD, n(%)	6 (40%)
Previous MI, n(%)	7 (47%)
Previous CABG, n(%)	2 (13%)
Stable angina n(%)	15 (100%)

Lesion Characteristics

22

Pre Intervention QCA Results

Characteristics	N = 15 Patients
Lesion length, mm	9.98 ± 1.98
Reference diameter, mm	2.67 ± 0.32
MLD, mm	0.98 ± 0.29
% Diameter stenosis	63.5 ± 9.90

Values are expressed as mean \pm standard deviation. *

Post Procedure QCA Results

Characteristics N = 15 Patients	In Stent	In Segment
MLD, mm	2.64 ± 0.31	2.21 ± 0.36
% Diameter stenosis	8.4 ± 4.3	20.5 ± 9.0
Acute gain, mm	1.66 ± 0.34	1.23 ± 0.40

Values are expressed as mean \pm standard deviation. *

Procedure Results

Variable	Lesions (n = 15)
Pre-dilatation, n(%)	15 (100%)
Post-dilatation, n(%)	7 (47%)
Number of stents per lesion	1
Stent mean length, mm	19 mm
Mean final deployment pressure, ATM	12,4 atm
Acute/subacute stent thrombosis, n(%)	0
Angiographic success, n(%)	15 (100%)
Procedure sucess, n(%)	15 (100%)

Excellent 4-Month QCA Data

Variable (n=15)	In-Stent	In-Segment
MLD, mm	2.34 ± 0.36	2.02 ± 0.37
% Diameter stenosis	13.8 ± 7.0 $23.6 \pm 8.$	
Late lumen loss, mm	0.30 ± 0.25	0.16 ± 0.29
Restenosis [*] , % (n)	0.0 (0)	0.0 (0)

Values are expressed as mean \pm standard deviation. *Defined as diameter stenosis \geq 50% at angiographic FU.

The VESTASYNC I FIM study met its primary safety and efficacy endpoints

No Degredation At 9-Months

Variable (n=12) 4- Months	In-Stent	In-Segment
Late lumen loss, mm	0.31 ± 0.26	$\textbf{0.17} \pm \textbf{0.32}$
Restenosis [*] , % (n)	0.0 (0)	0.0 (0)
Variable (n=12) 9- Months	In-Stent	In-Lesion
MLD, mm	2.27 ± 0.33	2.02 ± 0.29
% Diameter stenosis	15.9 ± 8.2	23.6 ± 9.5
Late lumen loss, mm	0.37 ± 0.24	$\textbf{0.20} \pm \textbf{0.31}$
Restenosis [*] , % (n)	0.0 (0)	0.0 (0)

Matched comparison of 12 pts with 4 and 9 month QCA analysis did not show a significant increase in LLL (P=0.9)

Excellent 4-Month IVUS Data

Variable	Baseline n=14*	4-Month FU n=14*
Vessel Volume (mm ³)	276.7 ± 117.1	276.6 ± 84.8
Stent Volume (mm ³)	145.7 ± 14	142 ± 0.5
Lumen Volume (mm ³)	145.8 ± 47.5	138.8 ± 33.5
NIH Volume (mm ³)	N/A	3.9 ± 3.3
Mallapposition Volume	0.15 ± 0.5	0.09 ± 0.3
% Stent Obstruction	N/A	2.6 ± 2.2

* IVUS consol disk drive malfunction has prevented retrieval of data for patient #14

No Degradation At 9-Months

Variable	4-month N= 11 P*	9-month N= 11 P*
Vessel Volume (mm ³)	286.9 ± 87.4	296.8 ± 85.6
Stent Volume (mm ³)	140.5 ± 36.7	143.1 ± 41.4
Lumen Volume (mm ³)	136.3 ± 34.2	136.8 ± 38.2
NIH Volume (mm ³)**	4.3 ± 3.5	6.1 ± 4.9
Mallapposition Volume (mm ³)	0.14 ± 0.34	0.13 ± 0.36
% Stent Obstruction**	2.8 ± 2.2	3.8 ± 2.3

* IVUS consol disk drive malfunction has prevented retrieval of data for patient #14

Matched comparison of 11 pts with 4 and 9 month IVUS analysis did not show a significant increase in volume / % obstruction

IVUS Volumetric Analysis Volume Variation from Baseline to 9-month FU N=11

* Lumen volume variation between 4 and 9-month FU did not achieve statistical significance (p=0.7)

No Major Cardiac Events

Variable	Patients (n=15)
In-hospital	0
MI, n(%)	0
TLR, n(%)	0
Stent thrombosis, n(%)	0
4-month follow-up	
Death, n(%)	0
MI, n(%)	0
TLR, n(%)	0
TVR, n (%)	0
Stent thrombosis, n(%)	0
9-month follow-up	
Death, n(%)	0
MI, n(%)	0
TLR, n(%)	0
TVR, n (%)	0
Stent thrombosis, n(%)	0

VESTASYNC-I Conclusions

- Acute sucess was achieved in all patients with no in-hospital adverse events
- The novel MIV (Sirolimus)-eluting stent was effective in reducing lumen loss (0.30mm) and NIH formation (2.8%) at four-month angiographic follow-up
- These enthusiastic initial results were sustained at nine-month follow-up with no evidence of late "catch up" by QCA and IVUS evaluation.
- Long-term data in more complex groups of patients is necessary to confirm its safety profile