Evidence-based Overview of DES in CTO Revascularization

Clinical Trials and Outcomes with DES Treatment of Chronic Total Occlusions

David E. Kandzari, MD, FACC, FSCAI Chief Medical Officer Cordis Corporation, Johnson and Johnson Warren, NJ dkandzar@crdus.jnj.com

Evidence-based Overview of DES in CTO Revascularization

Relevant Disclosure

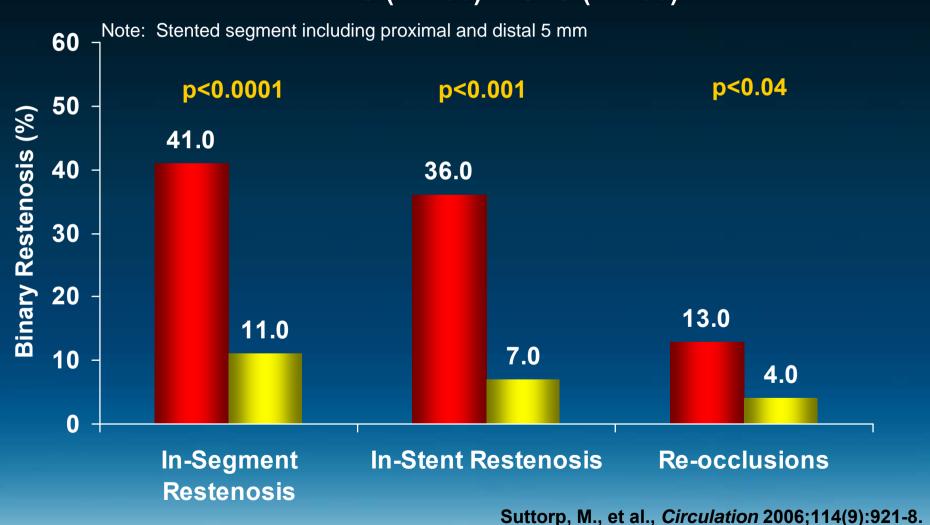
Employment:

Cordis/ Johnson and Johnson

Background

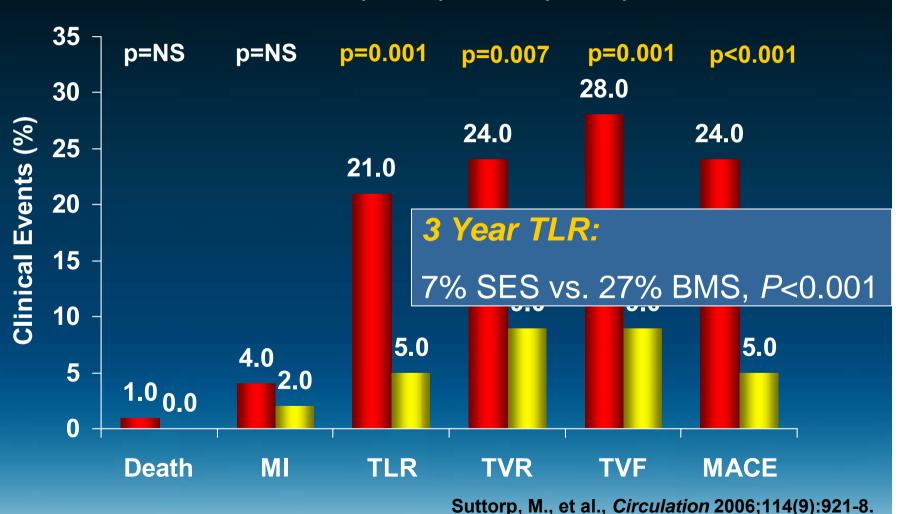
		Re-Occlusion		Restenosis		TVR				
Trial	N	PTCA	Stent	p-	PTCA	Stent	p-	PTCA	Stent	p-
SICCO	114	26%	16%	NS	74%	32%	<0.01	42%	22%	0.025
GISSOC	110	34%	8%	<0.01	68%	32%	<0.01	22%	5%	0.04
Mori et al.	96	11%	7%	0.04	57%	28%	<0.01	49%	28%	<0.05
SPACTO	85	24%	3%	0.01	64%	32%	0.01	40%	25%	NS
TOSCA	410	20%	11%	0.02	70%	55%	<0.01	15%	8%	0.03
PRISON	200	7%	8%	NS	33%	22%	NS	10%	3%	<0.01
STOP	96	17%	8%	NS	71%	42%	0.032	42%	25%	NS

SICCO: Stenting in Chronic Coronary Occlusion


GISSOC: Gruppo Italiano di Studi sulla Stent nelle Occlusioni coronariche SPACTO: Stent vs. Percutaneous Angioplasty in Chronic Total Occlusion

TOSCA: Total Occlusion Study of Canada

PRISON: Primary Stenting of Occluded Native Coronary Arteries


STOP: Stents in Total Occlusion for Restenosis Prevention

PRISON II 6-Month Angiographic Binary **Restences** (n=100)

PRISON II 12-Month Clinical Follow-up

■ BMS (n=100) ■ SES (n=100)

Study Design

CYPHER® SES N = 200 TOSCA-I BMS Control N = 202

Primary Endpoint:

6-Month Angiographic Binary Restenosis (≥ 50%)
within the "Treated Segment"
Compared with Historic Control TOSCA-I BMS Arm

Treated Segment defined as length of contiguous target segment exposed to balloon inflation

Clinical F/U at 150 days: 197 (98.5%) Clinical F/U at 180 days: 185 (92.5%) Angiographic F/U: 170 (85.0%)

Secondary Endpoints

- Lesion, device and procedural success
- 6-month, in-segment and in-stent:
 - Binary restenosis (≥ 50%)
 - Late lumen loss
 - Minimum lumen diameter (MLD)
- Major adverse cardiac events (MACE) at 30 days, 6 months, and annually out to 5 years
- Target lesion revascularization (TLR) at 6 and 12 months
- Target vessel revascularization (TVR) at 6 and 12 months
- Target vessel failure (TVF) at 6 and 12 months
- Failure of sustained patency at 6 months
- Protocol- and ARC-defined stent thrombosis

Study Administration

Sponsor and Principal Investigator

David E. Kandzari, MD*
Sunil Rao, MD
Duke University Medical Center
Durham, NC

Funding:

Cordis Corporation, a Johnson and Johnson Company Warren, NJ

Data Coordinating Center:

Duke Clinical Research Institute (DCRI)

Durham, NC

Angiographic Core Lab:

Cardiovascular Imaging Research Core Laboratory (CIRCL) University of British Columbia Vancouver, BC

Medical Monitor:

Michael Cuffe, MD

Duke University Medical Center

Durham, NC

Site Monitoring:

Duke Clinical Research Institute (DCRI) Durham, NC

^{*} Enrollment and 6-month follow-up completed prior to employment with Cordis Corporation.

Baseline Characteristics

CYPHER® SES N = 200 Patients

Age (years)	62.0 ± 10.9
Male (%)	80.0
History of MI (%)	33.5
History of Previous PCI (%)	32.5
History of CABG (%)	8.5
Diabetes Mellitus (%)	24.5
History of Hyperlipidemia (%)	86.0
History of Hypertension (%)	69.5
History of Congestive Heart Failure (%)	4.0
Current Smoker (%)	17.5

Angiographic Characteristics

CYPHER® SES 200 Lesions

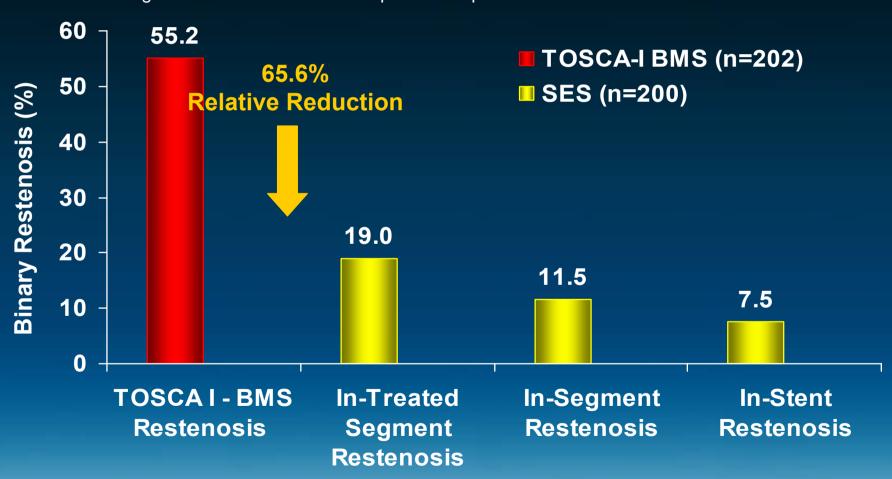
Vessel Location (%)	
LAD	29.5
LCX	21.5
RCA	49.0
Moderate to Severe Calcification (%)	46.7
Side Branch Occlusion (%)	9.7
Reference Vessel Diameter (mm)	$\textbf{2.97}\pm\textbf{0.67}$
Mean Treated-Segment Length (mm)	51.9 ± 24.9
Total Implanted Stent Length (mm)	48.9 ± 24.3
≥2 Stents implanted (%)	75.0
Overlapping Stents (%)	92.0

Treated Segment defined as length of contiguous target segment exposed to balloon inflation

Procedural Success

	CYPHER® SES 200 Lesions
Lesion Success (%)	99.5
Device Success (%)	98.0
Procedural Success (%)	97.9

- Lesion success: < 50% residual stenosis of target lesion using any percutaneous method
- Device success: < 50% residual stenosis of target lesion using only assigned device
- Procedural success: < 50% residual stenosis of target lesion and no in-hospital MACE


QCA at 6 Months

CYPHER® SES 200 Lesions	In-segment	In-stent	Proximal Edge	Distal Edge
MLD (mm)	1.93 ± 0.62	2.23 ± 0.67	2.87 ± 0.67	2.23 ± 0.59
% Stenosis	33.02 ±	21.28 ±		
Acute Gain (mm)	$17.45 \\ 1.88 \pm 0.58$	$20.57 \ 2.44 \pm 0.45$	<u></u>	
` '			0.40 ± 0.47	0.24 ± 0.29
Late Loss (mm)	0.02 ± 0.48	0.24 ± 0.63	0.10 ± 0.47	0.24 ± 0.38
Loss Index (mm)	0.23 ± 0.07	0.30 ± 0.12		
TIMI Flow 0 (%)	2.4			
TIMI Flow 1 (%)	0.6			
TIMI Flow 2 (%)	7.7			
TIMI Flow 3 (%)	89.4			

ACROSS - CYPHER®

6-Month Angiographic Binary Restenosis

In treated-segment refers to length of contiguous target segment exposed to balloon inflation In-segment includes stented area plus 5 mm proximal and distal to stent

TOSCA: Circulation 1999; 100:236-42.

Population Comparison Based on 10 Variables

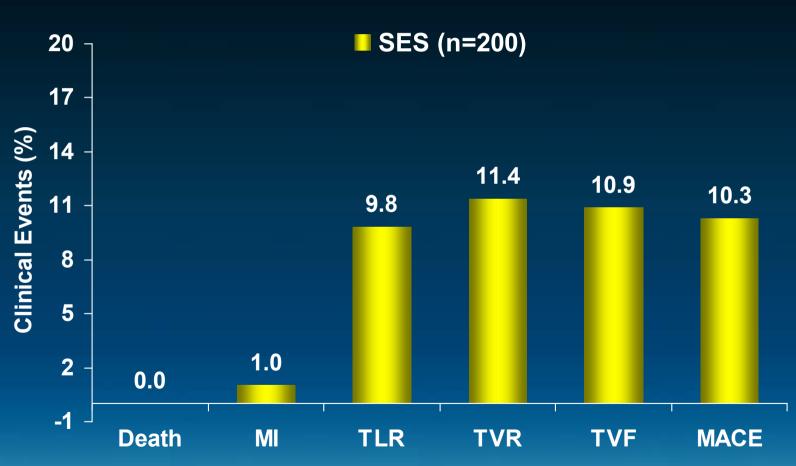
	ACROSS-CYPHER® (N = 200)	TOSCA-1 (N = 202)	p-value (before)
Age (years)	62.0 ± 10.9	57.5 ± 10.5	<0.001
Age of Occlusion > 6 weeks	78.8% (119/151)	36.6% (48/131)	<0.001
Baseline RVD (mm)	3.0 ± 0.6	$\textbf{3.3}\pm\textbf{0.6}$	<0.001
Current Smoker	17.6% (35/200)	17.8% (36/202)	0.9326
History of Diabetes	24.5% (49/200)	14.9% (30/202)	0.0158
Male	80.0% (160/200)	83.7% (169/202)	0.3415
History of Hypertension	69.5% (139/200)	34.7% (70/202)	<0.001
Target Vessel: LAD	29.5% (59/200)	38.6% (78/202)	0.0545
Stent Length (mm)	48.9 ± 24.3	29.7 ± 17.0	<0.001
Working Lesion Length (mm)	51.9 ± 24.9	35.9 ± 18.8	<0.001

Despite the more difficult to treat baseline patient and lesion characteristics, the unadjusted 6-month angiographic binary restenosis rate favored ACROSS-CYPHER®

Treatment Effect

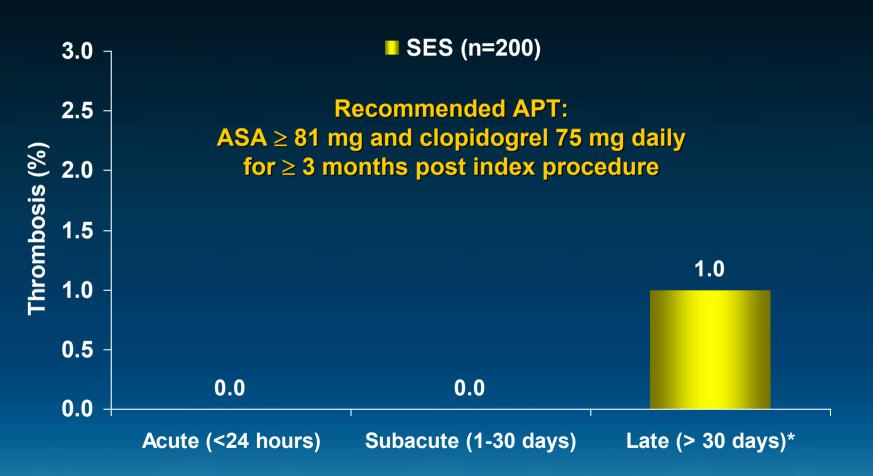

Groups were matched using propensity score adjusted for 3 variables (diabetes, baseline reference diameter and working lesion length)

	ACROSS-CYPHER® (N = 200)	TOSCA I (N = 202)	OR and 95% CI	p-value
Angiographic	22.6%	55.2%	0.160	<0.0001
Binary Restenosis	(38/168)	(107/94)	(0.090, 0.283)	

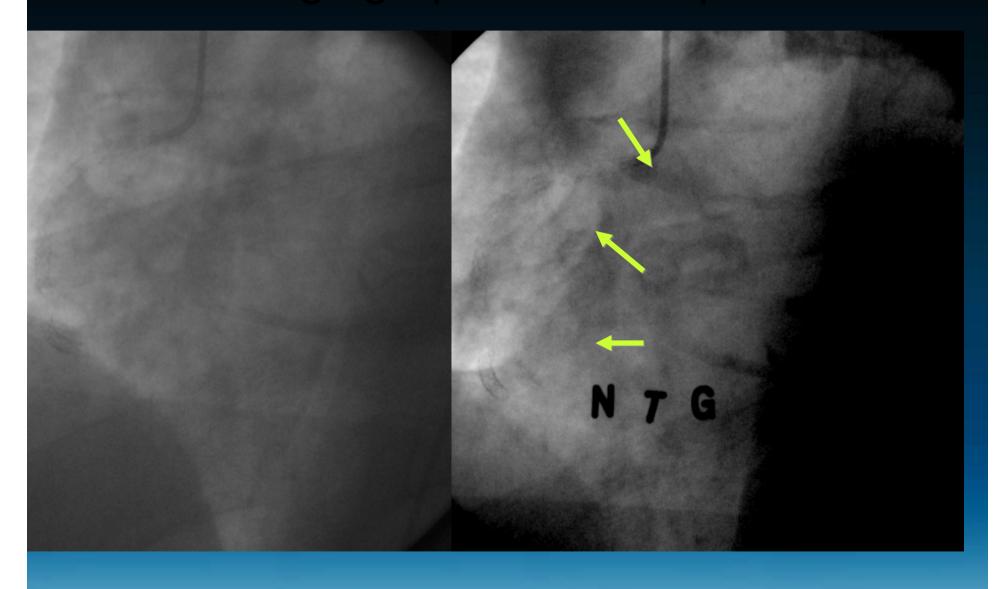

When adjusted for 5 variables (age, current smoker, history of diabetes, baseline reference diameter and working lesion length)

	ACROSS-CYPHER® (N = 200)	TOSCA I (N = 202)	OR and 95% CI	p-value
Angiographic	22.6%	55.2%	0.167	<0.0001
Binary Restenosis	(38/168)	(107/94)	(0.093, 0.300)	

6-Month In-Stent Binary Restenosis in Subgroups



1 Year Clinical Outcomes


MACE defined as death, MI (Q- and non-Q-wave), emergent bypass surgery, or repeat TLR

1 Year Stent Thrombosis

Dual APT compliance at 6 months 177/189 (93.7%)
* In one patient, thrombus was noted in a side branch of the RCA (index vessel)
which was considered the working length of the RCA.

7 month angiographic follow-up

Evaluation of Stent Fracture at 6 Months

	Patients with Stent Fracture N = 32	Patients w/o Stent Fracture N = 168	p- value
Mean Stent Length (mm)	69.7 ± 24.6	45.0 ± 22.2	<0.001
Overlapping Stents	100.0% (30/30)	89.9% (107/119)	0.06
Binary Restenosis			
In-segment	21.9% (7/32)	11.7% (16/137)	0.07
In-stent	15.6% (5/32)*	7.4% (10/136)	0.09
Stent Thrombosis	3.1% (1/32)	0.0% (0/165)	0.16

^{*} Of the 5/32 fracture patients with in-stent restenosis, 2 patients had restenosis at the site of fracture (1 patient had restenosis at 2 separate fracture sites).

PRISON III Study Design

Prospective, Randomized, Single-blinded, 2-Center Study Comparing Sirolimus-eluting and Zotarolimus-eluting Stents in TCO*

300 Patients
Randomized 1:1

CYPHER®Sirolimus-eluting Stent

Endeavor Zotarolimus-eluting Stent

Primary Endpoint:
In-segment Late Lumen Loss at 8 Months

*Total chronic occlusion (TCO) defined as ≥2 weeks with TIMI 0 or 1 flow

Evidence-based Rationale for DES in CTO Revascularization Summary

- Despite greater lesion complexity than in prior CTO trials, percutaneous revascularization with DES results in substantial reductions in angiographic restenosis and the need for repeat revascularization
 - In ACROSS/TOSCA 4, when restenosis following SES treatment of CTOs occurs, it most commonly occurs beyond the stent margins but within the treated segment

Evidence-based Rationale for DES in CTO Revascularization Summary

- Treatment of CTOs with DES has introduced new benefits, new dilemmas
 - Aside from \$\percura ABR\$, long term patency with DES may be associated with preservation of improved LV function
 - Strut fracture and LSM may be more common; clinical implications uncertain
 - Duration of dual antiplatelet therapy uncertain
- Planned 5-year follow-up in ACROSS/TOSCA 4
 should further qualify the long-term clinical
 outcomes in this complex patient population