Vulnerable Plaque Imaging By Computed Tomography

Koen Nieman, MD, PhD

Rotterdam Thoraxcenter Erasmus Medical Center Departments of Cardiology & Radiology The Netherlands

Motivation

- CAD has a long subclinical course with the risk of sudden, devastating events
- More accurate, invasive techniques have practical/economic drawbacks
- CT/MRI/PET allow early detection, and perhaps identify individuals/lesions at risk

Vulnerable Plaque Imaging

AIV

Circulation 2003

EUR '02

Coronary Calcium

- Low-dose scan
- High sensitivity (IVUS)
- Calcium = atherosclerosis
- CCS ≈ total plaque burden
- CCS predicts CV events

St Francis Heart Study Arad, et al, JACC 2005

Erasmus MC

zamo

Prospective Population-based 4613 individuals Mean follow-up 4.3 years 50-70y Caucasians

Relative risk 9.2 for death/non-fatal MI (CCS>100) CCS predicts CAD events independently of FRS CCS more accurately predicts events: AUROC .79 vs .68 (FRS)

Calcium Screening (asymptomatic)

*without diabetes, history of CVD, very high single risk factor

Greenland, et al, JACC/Circulation 2007, ACCF/AHA Expert Consensus Document on Coronary Calcium Scoring

- calcium does not indicate coronary stenosis
- CCS only progresses, despite therapy
- Slowed CCS progression by treatment poorly related to events

Eraspus MC University medical Center Rotterdam zafing

- Rule out CAD in patients at intermediate probability (after functional tests)
- Potential replacement of cath angiography and/or ischemia testing

Coronary Plaque Detection CT vs IVUS in large proximal segments

Non-calcified Sensitivity 53%* Sensitivity 83%** Any Plaque Sensitivity 82%* Sensitivity 90%**

Calcified Sensitivity 94%* Sensitivity 95%**

*16-slice – Achenbach, Circ.'04 **64-slice – Leber, JACC '06

Coronary Plaque Volume 64-CT vs IVUS

Erasmus MC

zamo

Annual progression 24% (LM/pLAD) [Schmid '08] No (noncalcified) plaque regression by statins [Schmid '08] Non-calcified plaque reduction by statin: 24% [Burgstahler '07]

Plaque Characterization

CT attenuation (HU) versus IVUS plaque classification

Author	СТ	Ν	Soft	Intermediate	Calcified
Schroeder '01	4×1	15	-42 - 47	61 - 112	126 - 736
Leber '04	16×.75	37	14 - 82	34 - 125	162 - 820
Pohle '06	16×.75	32	-39 - 167	60 - 201	

- Lumenal contrast effect
- Subtle motion and beam hardening
- Plaque enhancement
- Outer border differentiation

Carotid Plaque by CT

Erasmus MC University medical Center Rotterdam zafing

Carotid Plaque by CT

Vulnerable Plaque

- Severe stenosis
- Plaque density
- Superficial calcified nodule
- Outward vessel remodeling
- Lipid core?
- Enough?

Leber et al, JACC 2006

Macrophage Imaging

Macrophage staining

EM macrophage containing iodine

Iodinated particles (256nm) Atherosclerotic rabbit aorta

Hyafil et al, Nature Med. 2007

Coronary Plaque by MR. Carmon

Fayad, Circulation 2000

- Versatile, but difficult
- Harmless
- Continuous trade-off:
 - Image quality
 - Scan time
- Coronary most challenging:
 - Size & tortuosity
 - Depth
 - Pericardial fat
 - Coronary motion
 - Breathing

Multi-Contrast Plaque Imaging

T1w, T2w, proton-density weighted imaging

Multicontrast MRI Plaque Rupture

Predictive Value of Carotid MRI

Erasmus MC

Prospective study of 154 asymptomatic patients with a 50-79% carotid stenosis **Multicontrast MRI** 1.0 ents with thick FC 38-months follow-up Event 0.8-Associated with subsequent CVA P<0.001 Patients with thin/rup FC 0.6 1. Thin or ruptured fibrous cap Proportion of Patients 2. Intra-plaque hemorrhage 0.4 3. Large lipo-necrotic core 0.2 Thin/ruptured cap 0.0-0.00 20.00 40.00 60.00 80.00 Takaya, et al, Stroke 2006 Follow-up Time, mo

Carotid Plaque Regression by Rosuvastatin Underhill, et al, AHJ 2008

41% reduction lipid-core-containing plaque over 24 months Measurement error carotid arteries 3.5% [Corti, 2001]

Macrophages by MRI

Erasmus MC zafing

Iron oxide uptake in macrophages

In-vivo human carotid with USPIO

Ultra-Small Super-Paramagnetic Iron Oxide (USPIO)

Ruehm, Circulation 2001, Tang, Stroke 2006, Howarth, EJR 2008

Erasmus MC University medical Center Rotterdam zafing

Imaging VCAM-1

High-cholesterol diet +/atorvastatin

High-cholesterol diet +/atorvastatin

¹⁸FDG PET-CT

Simvastatin treatment

Baseline and 6-months CT/PET

Tawakol, JACC 2006

Tahara, et al, JACC 2006

Conclusions

- Computed Tomography:
 - Atherosclerosis/lesion detection
 - Patient risk stratification
 - Road map for invasive imaging and PCI
- Magnetic resonance imaging:
 - Serial (non-coronary) plaque imaging
 - Promising molecular imaging
- Nuclear imaging (with CT):
 - Promising for (coronary?) inflammation imaging