

Invasive Diagnostic

Ik-Kyung Jang, MD, PhD

Associate Professor of Medicine Harvard Medical School

Massachusetts General Hospital

Angioplasty Summit 2008

Stable vs Vulnerable Plaque

Stable Plaque

- Low lipid conc.
- Thick fibrous cap
- Low mo density

Vulnerable Plaque

High lipid conc.
Thin fibrous cap
High m
 density

MGH 1811

Current Technology for VP Identification

Non invasive - CTA - MR

Invasive

- Anatomic
- Physiologic

Intravascular Modalities

IVUS
Angioscopy
IV MR
OCT

Anatomic Information

ThermographySpectroscopy

Biochemical Information

Intravascular Modalities

IVUS
Angioscopy
IV MR
OCT
Thermography
Spectroscopy

IVUS

• Echolucency

Remodeling

• Distensibility

• Echolucency

• Remodeling

• Distensibility

Prevalence of Echolucent Area on IVUS

MGH

Echolucent Area: Unstable vs stable angina

Schoenhagen et al. Circulation 2000

Echolucency

- Previous histological studies have demonstrated that the discrimination of lipid is inconsistent using greyscale images alone.
 - Palmer et al. Eur Heart J., 1999
 - Peters *et al.* J Am Soc Echocardiogr., 1994
 - Peters et al. Circulation, 1994

IVUS vs OCT (n = 145)

	Sensitivity (%)	Specificity (%)	PPV (%)
Deep lipid	17.9	97.0	95
Superficial lipid	6.3	97.0	88
1 quadrant lipid	22.7	93.9	93
2 quadrant lipid	1.8	100.0	100

IVUS

• Echolucency

Remodeling

• Distensibility

Vascular remodeling: Unstable vs stable angina

IVUS

• Echolucency

• Remodeling

• Distensibility

Arterial Distensibility Results

	Lipid Rich	Mixed	Fibrous	Р
Number	7	6	16	
EEM CSA (mm ²)	16.1 ± 7.2	16.9 ± 4.6	17.1 ± 0.4	NS
Lumen CSA (mm ²)	7.2 ± 1.4	8.5 ± 3.6	8.5 ± 0.4	NS
Plaque Volume (mm ²)	8.9 ± 5.2	8.4 ± 3.5	8.6 ± 2.9	NS
Distensibility Index (mmHg ⁻¹)	2.8 ± 1.8	1.7 ± 0.9	1.0 ± 0.8	0.004

• Echolucency

→ Virtual Histology

 Remodeling (Plaque volume)

• Distensibility

Virtual Histology[™] IVUS

THIS IS THE PROBLEM !

ID (IVUS Defined) TCFAs

MP Margolis, MD, PhD

Histology slice thickness

What is the "Gold Standard" for *In-Vivo* "histology"? Histopathology or Pathologists?

Pathologists 1(March 2006) 2006)

Pathologists 2 (Aug 2006)

Pathologists 3 (Sept

19) CCF 05104 B2

Pathologists 1(March 2006) 2006)

Pathologists 2 (Aug 2006)

Pathologists 3 (Sept

Pathologists 1(March 2006)

Pathologists 2 (Aug 2006)

Pathologists 3 (Sept 2006)

Sensitivity and Specificity: in vitro

	Elastogram positive	Elastogram negative	
Histology positive	20	3	23
Histology negative	4	27	31
	24	30	54
\Rightarrow	Sensitivity Specificity	= 88% = 89%	

Schaar JA, et al. Circulation 2003

Strain and tissue components

MGH

1811

Invasive Imaging Modalities

IVUS
Angioscopy
IV MR
OCT
Thermography
Spectroscopy

The frequency of yellow plaque

MGH

Incidence of ACS: Angioscopic Finding

Invasive Imaging Modalities

IVUS
Angioscopy
IV MR
OCT
Thermography
Spectroscopy

MGH 1811

Top-spin® intracoronary MR catheter

Correlation of lipid fraction determined by ic MR and histology

MGH

1811

Intravascular MRI of Watanabe Rabbits

Watanabe rabbit with a 0.032" MRI-Guidewire

FSE, 1200/13-msec TR/TE, Double IR blood suppression, 16 ETL, 4-cm FOV, 32 NEX, 256x256 matrix

Resolution: 150 μm

Serfaty et al.

Stanford

MGH

Invasive Imaging Modalities

IVUS
Angioscopy
IV MR
OCT

ThermographySpectroscopy

In vivo thermal heterogeneity within human atherosclerotic coronary arteries

MGH

1811

MGH 1811

Risk of Adverse Cardiac Events

Stefanadis et al. JACC. 2001

Clinical Presentation and the Temperature Difference: hsCRP

Stefanadis et al. J Mol Cell Cardiol. 2000

Atorvastatin and Plaque Temperature

Foutouzas et al reported correlation between temperature and expansive remodeling and MMP-9 concentration.

Verheye et al showed that temperature heterogeneity was reduced after change from high to low-cholesterol diet in rabbits.

Invasive Imaging Modalities

IVUS
Angioscopy
OCT
IV MR
Thermography
Spectroscopy

Characterization of plaque histology by NIR spectroscopy (ex vivo, no blood, no motion)

All values in %.		
Sensitivity		
Specificity		
Positive predictive value		
Negative predictive value		

InfraReDx Spectroscopy System

- Three components: console, PBR, catheter (3.2 Fr, monorail, 0.014" compatible)
- Automatically scans artery
- Spectra processed by algorithm and displayed to user as a chemical image of lipid rich plaque probability ("Chemogram")

1811

Comparison of Chemogram with Histology

Multiple views of lipid-rich plaque probability

MGH

1811

Intermediate Stenoses Caused by Lipid-rich vs Fibrotic Plaques: Detection by NIR Spectroscopy

"Lipid Burden Index"

MGH 1811

- Measure of overall Plaque Burden
 - Potentially useful as measure of risk or of pharmacologic treatment efficacy
- Fraction of Chemogram image pixels above probability of 0.6
 - Scaled from 0 to 1000
- 0.85 AUC vs. fibroatheroma presence (0.79 0.91)

LRP Burden Index Mosaic

Invasive Imaging Modalities

IVUS
Angioscopy
IV MR
OCT
Thermography
Spectroscopy

Ex Vivo Study Results

Fibrous	SENS	.87	PPV	.88
	SPEC	.97	NPV	.96
Calcific	SENS	.95	PPV	1.0
	SPEC	1.0	NPV	.95
Lipid pool	SENS	.92	PPV	.81
	SPEC	.94	NPV	.97

Interobserver k = 0.88, Intraobserver k = 0.91

Yabushita, .. Jang, Bouma, Tearney. Circulation 2002

MGH **Correlation between OCT and histology** y = 1.02x + 3.8r = 0.89 **p** < 0.0001

OCT measurement (탆)

Linear NSD vs. CD68

<u>CD68 % area > 10 % -</u> <u>NSD cutoff 6.2%</u>

SENS 100% (70-100%)SPEC 100% (60 -100%)

Tearney, .. Jang, Bouma. Circulation 2003

Stable vs Vulnerable Plaque

Stable Plaque

- Low lipid conc.
- Thick fibrous cap
- Low m Φ density

Vulnerable Plaque

- High lipid conc.
- Thin fibrous cap
- High m Φ density

Plaque Characterization

- Goal: Determine plaque characteristics in various presentations of CAD
- Methods
 - Patients with CAD; N=57
 - OCT imaging culprit/remote lesions
 - OCT: 3.0 F catheter 8 cc saline purge
- Analysis
 - Clinical presentation:
 - AMI (20)
 - ACS (20)
 - SAP (17)
 - Two OCT readers ⇒ consensus
 - Cap thickness
 - Macrophage density (~NSD)

MGH

1811

Cap Thickness

Prevalence of TCFA

Jang et al. Circulation 2005

MGH

1811

Macrophage Density for Acute and Stable Clinical Syndromes

• Cap macrophage density is higher in acute clinical syndromes in both culprit and remote sites

Limitations of OCT

Need to create blood free zone
 No scanning capability
 Shallow penetration depth
 No functional information

Intravascular Diagnostics for VP

Modified from MacNeill and Jang. ATVB 2003

MGH

1811

Ideal Invasive Diagnostics for VP

Combination of imaging and physiologic test

- OCT + thermography
- OCT + spectroscopy
- IV MR + thermography

Invasive Diagnostics for VP

Questions 1. Can one justify the invasive diagnostic tests? - invasive - high cost - pt acceptability as a screening tool 2. Which patients? 3. When to perform the tests? 4. When to treat the lesions??

Optimal Medical Prevention

Cannon et al. *NEJM* 2004; 350: 1495–1504.

Invasive Diagnostics for VP

Inherent limitations
1. Local information (systemic disease)
2. Superficial information
3. Difficulty in sampling the same site
4. Gold standard (??) – validation problem
5. Only when a local therapy is viable!!

Acknowledgements

Cardiology Division OC Raffel S. Chia H. Yabushita M. Takano M. Kawasaki A. Low D. DeJoseph I. McNulty J. Healy

<u>Dept. of Pathology</u> S. Houser <u>Wellman</u> Laboratories of Photomedicine

B.E. Bouma S.H. Yun G.J. Tearney

Dept. of Radiology

T. Brady U. Hoffmann S. Abbara S. Achenbach

