A Collaborative Systemic Review and Meta-Analysis of A Results from 3976 Patients:

BMS vs. DES vs. CABG

Overall Safety and Efficacy Issues of Left Main Intervention

Duk-Woo Park, MD, PhD

University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea

Background

• Left main coronary artery (LMCA) disease is associated with a poor prognosis when treated medically, and its presence is indicated for coronary artery bypass surgery (CABG).

• Several registries data show promising results of percutaneous coronary intervention (PCI) with stent implantation in terms of safety and feasibility for patients with LMCA disease.

Background

• Despite the favorable outcomes after bare-metal stents (BMS) or drug-eluting stents (DES), subsequent restenosis or possible stent thrombosis limited the widespread use of PCI in LMCA disease.

• Also, previous studies about LMCA intervention were hampered by small numbers of patients, limited duration of follow-up or an retrospective observational study design.

Objective

- Despite the existence of multiple observational studies comparing DES, BMS, or CABG, none of them was individually powered to assess the comparative efficacy of each revascularization strategies in LMCA disease.
- Therefore, by aggregating all available registry data, we performed a collaborative systemic review and meta-analysis to assess the risk-benefit balance of PCI, in itself and in comparison with each PCI intervention (BMS vs. DES) and CABG.

Literature search and study selection

- We searched PUBMED, MEDLINE, EMBASE, and SCOPUS and Websites dedicated to dissemination of results from cardiovascular studies (www.acc.org, www.tctmd.com, www.theheart.org, www.clinicaltrialresults.org) for relevant full reports in any language (from inception to June 2007).
- In addition, we hand searched reference lists and checked relevant reviews and book chapters.

Literature search and study selection

- Two investigators (DWP, SCY) independently assessed reports for eligibility.
- To be included in the analysis, data had to be clinical studies in individuals with symptoms or signs of myocardial ischemia due to LMCA disease, comparing DES with BMS or DES with CABG, or reporting DES or BMS only for unprotected LMCA disease.
- Studies had to have ≥ 30 patients and \geq at least 6 months clinical follow-up duration.
- Duplicate publication, only PCI with balloon PTCA or DCA, only high-risk patients, only protected LMCA, ongoing/unpublished studies, and incomplete data reporting for analysis were excluded.

Pre-Specified End Points

- Study end points
 - Overall mortality
 - Myocardial infarction (MI), including Q-wave or Non-Q-wave MI
 - Target vessel revascularization (TVR)
 - MACE: composite of death, MI, or TVR
- ** In studies with non-availability of rates of TVR, we used rates of target lesion revascularization as a proxy measure.
- ** The number of patients experiencing an event and the overall number of patients at risk were recorded separately two time period (within 1 months & within 1 year).

Statistical Analysis

- The rates of mortality, MI, and TVR, as defined in each study, were pooled, and Pearson chi-square values were calculated for each of these individual end points.
- For MACE, there was no double counting of events.
- Generalized linear mixed effect model (GLMM) was used to combine each result of individual treatment modality and overall.
- Pooled estimates of relative risk (RR) were obtained by calculating the weighted average of the logarithm of RR.
- Breslow-Day test was used to address the heterogeneity among the registries.

Results

Identification of eligible studies

232 potentially eligible reports Identified and screened for retrieval

124 reports retrieved for detailed evaluation

31 reports included

: DES vs. BMS (5 reports)

DES vs. CABG (4 reports)

DES only (9 reports)

BMS only (13 reports)

108 reports excluded

24 review analyses

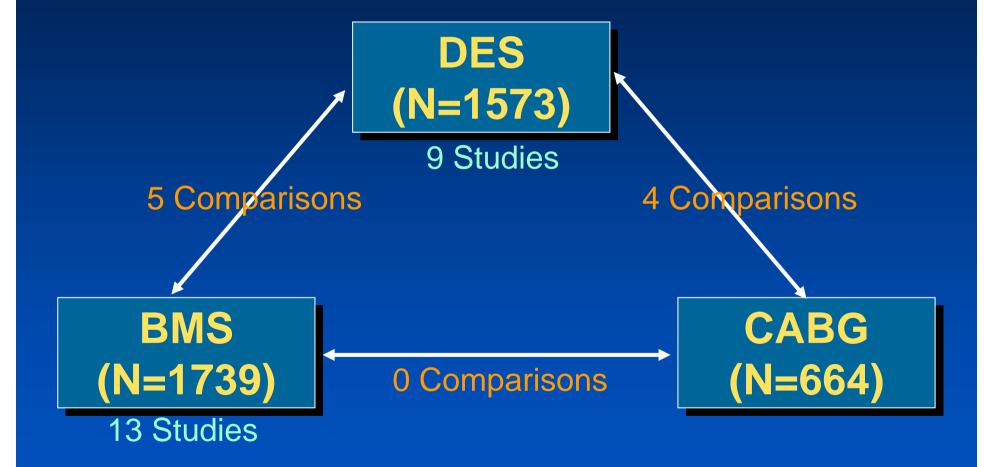
56 case-reports

12 mainly balloon angioplasty

16 Incomplete data

93 reports excluded

: 51 repetitive data from same center


9 protected LMCA only

14 high surgical risk only

19 less than 30 patients

Study Framework (Total 3976 patients)

Study	Pt (n)	<i>Gr</i> (<i>n</i>)	In. for PCI	Age (mean)	Male (%)	DM (%)	HTN (%)	ACS (%)	<i>EF</i> (%)	Bifurcation (%)
Park et al	223	BMS (121)	Stable · UA	58	72	21	36	68	62	42
(2005)	223	DES (102)	AMI	60	75	28	47	60	60	71
Cheiffo et al. (2005)	140	BMS (64)	SA	66	84	11	56	42	57	58
	149	DES (85)	UA	63	82	21	59	31	51	81
Valgimili et al. (2005) 216	216	BMS (86)	SA · UA	66	62	22	57	50	42	66
	210	DES (95)	AMI	64	66	31	53	52	41	65
Erglis et al.	103	BMS (50)	SA	63	82	12	50	16	54	68
(2007)	103	DES (53)	UA	61	85	11	58	19	56	81
Ya-ling et al.	210	BMS (34)	SA · UA	64	*	15	*	*	*	32
(2006)	210	DES (176)	AMI	62	*	29	*	*	*	72
Total	866	BMS (355)		63	73	18	48	50	54	54
	800	DES (511)		62	76	26	53	44	52	73

Study	Pt (n)	Gr (n)	In. for PCI	Age (mean)	Male (%)	DM (%)	HTN (%)	ACS (%)	<i>EF</i> (%)	Bifurcation (%)
Chieffo et al	200	DES (107)	Stable	64	*	19	59	32	52	81
(2006)	209	CABG (102)	- UA AMI	68	*	23	76	22	52	*
Lee et al. (2006) 173	172	DES (50)	SA	72	50	36	88	66	51	60
	1/3	CABG (123)	- UA AMI	70	76	31	81	45	52	*
Palmerini et	211	DES (157)	SA	73	70	26	69	66	52	80
al. (2006)	311	CABG (154)	- UA AMI	69	76	25	73	59	55	82
Sanmartin et	241	DES (96)	SA	66	81	19	44	64	51	17
al. (2007)	341	CABG (245)	- UA AMI	66	87	32	60	79	51	*
Total	1034	DES (410)		69	70	24	63	57	52	63
	1054	CABG (624)		68	81	30	75	59	52	*

9 Studies reporting DES results

Study	Center (n)	Pt (n)	In. for PCI	Age (mean)	Male (%)	DM (%)	HTN (%)	ACS (%)	<i>EF</i> (%)	Bifurcation (%)
Khattab et al. (2007)	10	82	SA/UA/AMI	70	73	23	84	50	*	34
Lei et al. (2007)	1	70	SA/UA	63	86	26	64	26	51	100
Morton et al. (2007)	1	30	SA/UA/AMI	63	63	*	*	*	*	100
Cheng et al. (2007)	1	113	SA/UA/NSTEMI	68	77	37	68	84	57	74
Sanmartin et al. (2007)	5	100	SA/UA/AMI	68	78	36	56	63	56	53
Migliorini et al. (2006)	1	101	SA/UA/AMI	70	80	32	88	68	*	87
Price et al. (2006)	1	50	SA/UA/AMI	69	64	26	70	34	*	94
Lee et al. (2005)	5	54	SA/UA/MI	60	67	28	41	65	60	52
De Lezo et al. (2004)	2	52	SA/UA	63	81	35	52	83	57	42
Total	27	652		67	75	31	68	61	54	69

13 Studies reporting BMS results

Study	Pt (n)	In. for PCI	Age (mean)	Male (%)	DM (%)	HTN (%)	ACS (%)	<i>EF</i> (%)	Bifurcation (%)
Run-lin et al (2006)	224	SA/UA	60	74	20	11	78	64	32
Peszek et al. (2006)	62	SA/UA	61	73	19	71	50	*	55
Carrie et al. (2005)	57	SA/UA/AMI	70	79	26	58	68	53	100
Marti et al. (2004)	38	UA/AMI	70	87	53	58	100	50	53
ZiaKas et al. (2004)	80	SA/UA/AMI	73	75	38	48	80	52	70
Kelley et al. (2003)	43	SA/UA/AMI	71	77	28	58	*	47	72
Brueren et al. (2003)	71	SA/UA	60	61	7	*	*	*	*
Tan et al. (2001)	279	SA/UA/AMI	66	65	21	46	80	51	58
Black et al. (2001)	92	SA/UA/AMI	74	80	22	45	75	56	7
De Lezo et al. (2001)	155	SA/UA/AMI	63	75	*	*	83	*	54
Silvestri et al. (2000)	140	SA/UA	70	79	14	41	55	61	*
Wong et al. (1999)	55	SA/UA	62	82	24	51	62	55	55
Korowski et al. 1998	88	SA/UA	67	84	28	59	66	42	31
Total	1384		65	74	22	43	74	55	44

Mortality (within 1 year)

Chieffo et al.

Valgimili et al.

Erglis et al.

Ya-ling et al.

Overall

BMS Better

0.1

DES Better

10

RR: NA (no event)

RR: 3.98 (1.12-14.13)

RR: 1.19 (0.59-2.39)

RR: 1.06 (0.07-16.50)

RR: 1.73 (0.49-6.05)

RR: 1.62 (0.76-3.43)

 $P (Overall \ Effect) = 0.149$ P (Heterogeneity) = 0.484

MI (within 1 year)

Chieffo et al.

Valgimili et al.

Erglis et al.

Ya-ling et al.

Overall

BMS Better

0.1

DES Better

10

RR: NA (no event)

RR: 1.11 (0.35-3.47)

RR: 2.76 (0.90-8.48)

RR: 1.48 (0.50-4.37)

RR: 2.59 (0.24-27.75)

RR: 1.11 (0.35-3.47)

 $P (Overall \ Effect) = 0.151$ P (Heterogeneity) = 0.697

TVR (within 1 year)

RR: 8.85 (2.13-36.85)

RR: 1.58 (0.88-2.82)

RR: 3.68 (1.55-8.74)

RR: 8.48 (1.10-65.39)

RR: 2.88 (1.03-8.05)

RR: 2.05 (4.63-3.08)

BMS Better

0.1

DES Better

10

 $P (Overall \ Effect) = 0.006$ P (Heterogeneity) = 0.157

MACE (within 1 year) : Death, MI, or TVR

RR: 8.85 (2.13-36.85)

Chieffo et al.

RR: 1.80 (1.05-3.07)

Valgimili et al.

RR: 1.87 (1.22-2.86)

Erglis et al.

RR: 2.27 (1.01-5.10)

Ya-ling et al.

RR: 2.33 (1.16-4.67)

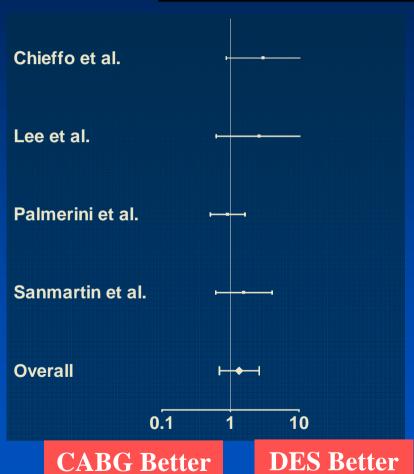
Overall

RR: 2.19 (1.05-3.07)

BMS Better

0.1

DES Better


10

++

 $P(Overall\ Effect) = 0.005$ P(Heterogeneity) = 0.414

Mortality (within 1 year)

RR: 3.01 (0.87-10.42)

RR: 2.64 (0.62-11.29)

RR: 0.91 (0.51-1.63)

RR: 1.57 (0.61-4.06)

RR: 1.34 (0.69-2.63)

 $P(Overall\ Effect) = 0.256$

P(Heterogeneity) = 0.227

MI (within 1 year)

RR: 2.67 (1.44-4.97)

Lee et al.

RR: NA

Palmerini et al.

RR: 0.54 (0.22-1.32)

Sanmartin et al.

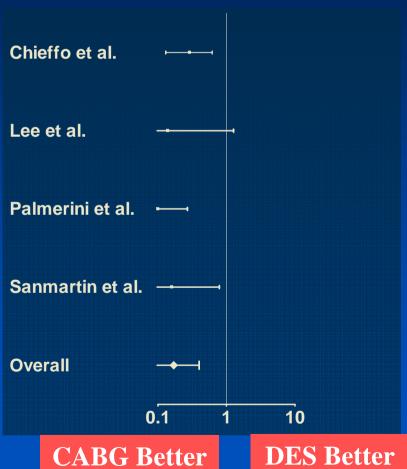
RR: NA

Overall

RR: 1.70 (0.81-3.56)

CABG Better

0.1


DES Better

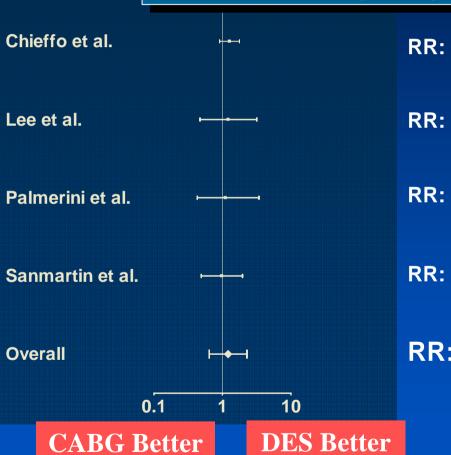
10

 $P (Overall \ Effect) = 0.106$ P (Heterogeneity) = 0.012

TVR (within 1 year)

RR: 0.29 (0.13-0.62)

RR: 0.14 (0.01-1.27)


RR: 0.10 (0.04-0.27)

RR: 0.16 (0.03-0.79)

RR: 0.17 (0.07-0.40)

 $P (Overall \ Effect) = 0.008$ P (Heterogeneity) = 0.409

MACE (within 1 year) : Death, MI, or TVR

RR: 1.27 (0.91-1.77)

RR: 1.22 (0.47-3.18)

RR: 1.11 (0.43-3.42)

RR: 0.98 (0.49-1.96)

RR: 1.21 (0.64-2.28)

 $P(Overall\ Effect) = 0.327$ P(Heterogeneity) = 0.745

Early outcomes (overall patients)

1 Month Death

	Estimated incidence (%)	RR with 95% CI	P value for difference
Treatment Group			
DES	2.2 (1.0-4.8)	*	*
BMS	2.1 (0.9-4.6)	*	*
CABG	2.0 (1.7-13.3)	*	*
Comparison			0.168
BMS vs. DES	*	0.94 (0.39-2.25)	0.859
CABG vs. DES	*	2.16 (0.90-5.16)	0.074
CABG vs. BMS	*	2.30 (0.72-7.37)	0.128

Early outcomes (overall patients)

1 Month MI

	Estimated incidence (%)	RR with 95% CI	P value for difference
Treatment Group			
DES	2.1 (1.0-4.4)	*	*
BMS	3.0 (1.3-6.7)	*	*
CABG	4.2 (1.7-10.4)	*	*
Comparison			0.071
BMS vs. DES	*	1.41 (0.67-2.99)	0.301
CABG vs. DES	*	2.03 (1.08-3.80)	0.033
CABG vs. BMS	*	1.43 (0.56-3.70)	0.388

Early outcomes (overall patients) 1 Month TVR

	Estimated incidence (%)	RR with 95% CI	P value for difference
Treatment Group			
DES	0.3 (0.1-1.0)	*	*
BMS	0.7 (0.2-2.9)	*	*
CABG	1.1 (0.2-6.3)	*	*
Comparison			0.191
BMS vs. DES	*	2.79 (0.50-15.57)	0.194
CABG vs. DES	*	4.24 (0.63-28.40)	0.112
CABG vs. BMS	*	1.52 (0.17-13.36)	0.655

ANGIOPLASTY SUMMIT 2008

CardioVascular Research Foundation

Early outcomes (overall patients) 1 Month MACE (Death, MI, TVR)

Estimated incidence (%)	RR with 95% CI	P value for difference
4.9 (3.1-7.7)	*	*
6.5 (3.8-11.2)	*	*
11.1 (6.1-20.1)	*	*
		0.012
*	1.34 (0.80-2.23)	0.219
*	2.28 (1.42-3.66)	0.005
*	1.70 (0.87-3.32)	0.104
	incidence (%) 4.9 (3.1-7.7) 6.5 (3.8-11.2) 11.1 (6.1-20.1) *	incidence (%) 95% CI 4.9 (3.1-7.7)

ANGIOPLASTY SUMMIT 2008

CardioVascular Research Foundation

Late outcomes (overall patients) 1 Year Death

	Estimated incidence (%)	RR with 95% CI	P value for difference
Treatment Group			
DES	5.2 (3.3-8.1)	*	*
BMS	7.4 (4.8-11.6)	*	*
CABG	7.4 (4.1-13.5)	*	*
Comparison			0.124
BMS vs. DES	*	1.45 (0.88-2.38)	0.121
CABG vs. DES	*	1.44 (0.89-2.33)	0.119
CABG vs. BMS	*	0.99 (0.51-1.91)	0.978

ANGIOPLASTY SUMMIT 2008

CardioVascular Research Foundation

Late outcomes (overall patients)

1 Year MI

		difference
(1.5-5.0)	*	*
(2.4-8.4)	*	*
(2.2-9.7)	*	*
		0.066
*	1.64 (0.88-3.07)	0.104
*	1.67 (0.99-2.84)	0.055
*	1.02 (0.46-2.26)	0.954
	*	(1.3-3.0) (2.4-8.4) * * * * * * * * * * * * * * * * * * *

Late outcomes (overall patients)

1 Year TVR

	Estimated incidence (%)	RR with 95% CI	P value for difference
Treatment Group			
DES	8.2 (5.7-11.8)	*	*
BMS	19.7 (14.0-27.9)	*	*
CABG	1.4 (0.7-2.9)	*	*
Comparison			<0.0001
BMS vs. DES	*	2.39 (1.64-3.48)	0.0009
CABG vs. DES	*	0.17 (0.09-0.33)	0.0004
CABG vs. BMS	*	0.07 (0.03-0.15)	<0.0001

Late outcomes (overall patients)

1 Year MACE

Estimated incidence (%)	RR with 95% CI	P value for difference
14.7 (11.0-19.6)	*	*
29.7 (22.6-39.0)	*	*
17.7 (11.7-26.9)	*	*
		0.0027
*	2.02 (1.52-2.69)	0.0009
*	1.21 (0.86-1.70)	0.230
*	0.60 (0.39-0.92)	0.026
	incidence (%) 14.7 (11.0-19.6) 29.7 (22.6-39.0) 17.7 (11.7-26.9) *	incidence (%) 95% CI 14.7 (11.0-19.6)

DES vs. BMS

Clinical Events (within 1 year)

TVR

MACE

1.0

RR: 1.45 (0.88-2.38)

P = 0.121

RR: 1.64 (0.88-3.07)

P = 0.104

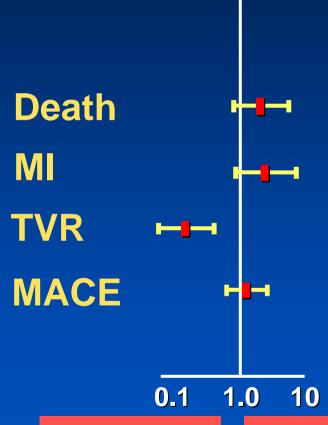
RR: 2.39 (1.64-3.48)

P = 0.0009

RR: 2.02 (1.52-2.69)

P = 0.0009

BMS Better


0.1

DES Better

10

DES vs. CABG

Clinical Events (within 1 year)

RR: 1.44 (0.89-2.33)

 $P = \overline{0.119}$

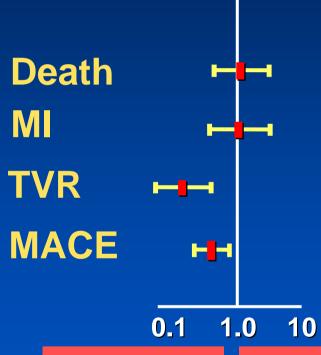
RR: 1.67 (0.99-2.84)

P = 0.055

RR: 0.17 (0.09-0.33)

P = 0.0004

RR: 1.21 (0.86-1.70)


P = 0.230

CABG Better

DES Better

BMS vs. CABG

Clinical Events (within 1 year)

RR: 0.99 (0.51-1.91)

P = 0.978

RR: 1.02 (0.46-2.26)

P = 0.954

RR: 0.17 (0.09-0.33)

P < 0.0001

RR: 0.60 (0.39-0.92)

P = 0.026

CABG Better

BMS Better

Conclusions

- Percutaneous intervention for LMCA disease with DES or BMS was feasible and safe with comparable early mortality and morbidity to bypass surgery.
- Mortality and MI incidence within 1 year was similar between patients treated with BMS, DES, and CABG.
- Incidence of TVR was significantly lower in CABG patients compared to BMS patients or DES patients.
- BMS patients showed a higher incidence of TVR compared to DES patients.

Conclusions

- The incidence of MACE (composite of death, MI, or TVR)
 was significantly higher in BMS patients in comparison with
 DES patients or CABG patients.
- However, DES patients showed the comparable incidence of MACE to bypass surgery.
- The long-term safety and efficacy of DES for unprotected LMCA needs to be ascertained in large, randomized trials.