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The geometry of Nature
Coronary artery bifurcations

Finet G. et al. Eurolntrvention 2007

Vascular branching :
- distributive function
- hemodynamic function



Multi-scale analysis
Quantification of coronary artery bifurcations according to mother-vessel diameter
Values obtained on quantitative coronary bifurcation angiography

For all
# of bifurcation 173
Dm (mean7DS) 3.339 *+ 0.948
Dd-targer (mean7DS) 2.708 £ 0.774
Dg-smatter (mean7DS) 2.236 * 0.689
Reduction in mm (mean7DS)  0.631 =% 0.365
% reduction 18.9
Mean ratio 0.678

Variables are presented as mean + SD

D inmm

Dn: Diameter of the mother vessel

Dd-1arger: Diameter of the larger daughter vessel

Dy-smaier: Diameter of the smaller daughter vessel

Reduction: difference between the diameter of mother vessel and the diameter of the larger
daughter vessel

Ratio: Dm/ (Dd-larqer+ Dd-smaller)

D

mother

R =
Ddaughter 1+Ddaughter 2

Finet G. et al. Eurolntervention 2007;3:1-9.




For an incompressible fluid,

The continuity formula is: Q01+Q02=Qi
Q=SV

If V=constant then :
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Distribution of the 173 sets of mother-vessel diameters, as measured and

calculated according to the 3 laws _
The linear law (R=0.678) is found to be the most exact: the flow conservation law

overestimates and Murray’s law underestimates the calculated mother-vessel diameter
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Tanaka et al. Am J Physiol Heart Circ Physiol 1999; 276:2262-2267
Murray CD. Proc Natl AcadSci USA 1926:12:207-214
Suwa N. Principle of pathomorphology. Tokyo, lwanami 1981

Finet G. et al. Eurolntervention 2007;3:1-9.



Side branch

Range [0.23 - 1.42 mm]

AD =0.63 £+ 0.36 mm—|

‘ D jaughter MaJjoOr= 2.70 £0.77 mm

D =3.33 £0.94

mother —
mm

D

daughter minor= 2.23 +£0.68 mm



D mother Measured 12.2mm

Rfractal = 0'678 Ddaughter1 measured :3.1 mm
Dgaughter » Measured :3.2mm
Expected D, ohe, :4.22 mm
(fractal ratio)

Expected %D stenosis: 50%

D Ddaughter major

mother

Ddaughter minor
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Range [0.23 - 1.42 mm]




Mechanical forces in the vascular wall

Pressure q Circumferential stress (kPa)
Velocity q Wall shear stress (N/m?)

Tanaka et al. Am J Physiol Heart Circ Physiol 276:2262-2267, 1999.



Wall shear stress

Velocity q Wall shear stress (N/m?)
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Wall shear stress distribution in bifurcation
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shear stress
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Taken from Caro et al, 1978

Taken from G. Giannakoulas (EBC 2008)



Flow behaviour in an normal bifurcation

Fabregues et al, 1998

e High WSS at
flow divider

e Low WSS at
lateral walls

G. Giannakoulas, G. Giannoglou, 2007



Hemodynamic Shear Stresses in Mouse Aortas
Implications for Atherogenesis

o

micro-CT scan

The differential localization
of VCAM-1 protein expression

WSS maps

Suo et al. Atheroscler Thromb Vasc Biol 2007;27:346.



Atherosclerotic lesion size and vulnerability
are determined by patterns of fluid shear stress

Cheng et al. Circulation 2006;113:2744-53.



The distribution of the low WSS values

IS INn accordance with the localization of atherosclerosis lesion
(LM bifurcation)
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Plague formation and Plaque progression

adapted from G. Giannakoulas (EBC 2008)



Flow behaviour in a stented coronary bifurcation

Courtesy of Valérie Deplano
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B Recirculating zone and/or low Flow Favor Atherosclerosis or NIH

Low mean shear
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Pro-thrombotic

Traub & Berk, ATVB 1998
Wentzel, 2001
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B struts protruding into the lumen generate very high stent shear stress (swss) values
Concomitant areas of high and low swss values favor:
- Platelet activation & deposition (Moake, 1988, Spijker, 2003)
- Thromboembolic complications (Bluestein, 2002)



Summary Epicardial coronary bifurcation

Arterial bifurcation is a morphological singularity of the vascular tree

Despite its seeming complexity the vascular bifurcation tree turns out to be a
sophiticated solution: a maximum cost/benefit ratio

Coronary bifurcation geometry is invariable whatever the observation scale and
precisely described by a fractal ratio, this ratio can be very useful in our daily
practice of angiography and angioplasty

D =0.678 (D +D

mother vessel aughter vessel2 )

daughter vessel 1

Flow dynamics, rheology, and geometry interact

The occurrence of atherogenesis, atherosclerosis, and thrombosis are closely
linked to local hemodynamic factors

Stented bifurcation can become focus of flow disturbances and complications



