Fluid dynamics and rheology in bifurcation lesions

Gérard Finet MD PhD

Department of Hemodynamics and Interventional Cardiology
Cardiovascular Hospital - Hospices Civils de Lyon
INSERM Unit 886
Claude Bernard University Lyon 1
Lyon - France

The geometry of Nature Coronary artery bifurcations

Finet G. et al. EuroIntervention 2007

Vascular branching :

- distributive function
- hemodynamic function

Multi－scale analysis
Quantification of coronary artery bifurcations according to mother－vessel diameter Values obtained on quantitative coronary bifurcation angiography

	For all
\＃of bifurcation	$\mathbf{1 7 3}$
D_{m}（meanアDS）	$3.339 \pm \mathbf{0 . 9 4 8}$
$\mathrm{D}_{\text {d－larger }}$（meanアDS）	$2.708 \pm \mathbf{0 . 7 7 4}$
$\mathrm{D}_{\text {d－smaller }}$（meanアDS）	$2.236 \pm \mathbf{0 . 6 8 9}$
Reduction in mm（meanアDS）	$\mathbf{0 . 6 3 1} \pm \mathbf{0 . 3 6 5}$
\％reduction	$\mathbf{1 8 . 9}$
Mean ratio	$\mathbf{0 . 6 7 8}$

Variables are presented as mean $\pm S D$
D in mm
D_{m} ：Diameter of the mother vessel
$D_{d-l a r g e r: ~}$ ：Diameter of the larger daughter vessel
$D_{d-s m a l l e r: ~ D i a m e t e r ~ o f ~ t h e ~ s m a l l e r ~ d a u g h t e r ~ v e s s e l ~}^{\text {d }}$
Reduction：difference between the diameter of mother vessel and the diameter of the larger
daughter vessel
Ratio：$D_{m} /\left(D_{\text {d－larger }+} D_{\text {d－smaller }}\right)$

$$
R=\frac{D_{\text {mother }}}{D_{\text {daughter 1 }}+D_{\text {daughter 2 }}}
$$

Finet G．et al．EuroIntervention 2007；3：1－9．

For an incompressible fluid,
The continuity formula is: $\mathbf{Q o 1 + Q 0 2 =} \mathbf{Q i}$
Q=SV
If $\mathrm{V}=$ constant then :

Distribution of the 173 sets of mother-vessel diameters, as measured and calcullated according to the 3 laws
The linear law $(R=0.678)$ is found to be the most exact: the flow conservation law overestimates and Murray's law underestimates the calculated mother-vessel diameter

Range [0.23-1.42 mm]

$D_{\text {daughter }}$ minor $=2.23 \pm 0.68 \mathrm{~mm}$

Mechanical forces in the vascular wall

Wall shear stress

Wall shear stress distribution in bifurcation

Taken from Caro et al, 1978

Taken from G. Giannakoulas (EBC 2008)

Flow behaviour in an normal bifurcation

Fabregues et al, 1998

Acceleration phase

Deceleration phase

G. Giannakoulas, G. Giannoglou, 2007

- High WSS at flow divider
- Low WSS at lateral walls

Hemodynamic Shear Stresses in Mouse Aortas Implications for Atherogenesis

WSS maps

The differential localization of VCAM-1 protein expression

Suo et al. Atheroscler Thromb Vasc Biol 2007;27:346.

Atherosclerotic lesion size and vulnerability are determined by patterns of fluid shear stress

Cheng et al. Circulation 2006;113:2744-53.

The distribution of the low WSS values

is in accordance with the localization of atherosclerosis lesion (LM bifurcation)

Soulis et al. J of Biomechanics 2006;39:742.

Plaque formation and Plaque progression

Flow behaviour in a stented coronary bifurcation

Ostium
 Reference
 partially opened

Deplano et al, 2004

Protuberant
struts

Traub \& Berk, ATVB 1998 Wentzel, 2001

Struts protruding into the lumen generate very high stent shear stress (swss) values Concomitant areas of high and low swss values favor:

- Platelet activation \& deposition (Moake, 1988, Spijker, 2003)
- Thromboembolic complications (Bluestein, 2002)

Arterial bifurcation is a morphological singularity of the vascular tree
Despite its seeming complexity the vascular bifurcation tree turns out to be a sophiticated solution: a maximum cost/benefit ratio

Coronary bifurcation geometry is invariable whatever the observation scale and precisely described by a fractal ratio, this ratio can be very useful in our daily practice of angiography and angioplasty

$$
D_{\text {mother vessel }}=\underline{0.678}\left(D_{\text {daughter vessel 1 }}+D_{\text {aughter vessel2 }}\right)
$$

Flow dynamics, rheology, and geometry interact
The occurrence of atherogenesis, atherosclerosis, and thrombosis are closely linked to local hemodynamic factors

Stented bifurcation can become focus of flow disturbances and complications

