13th Annual Angioplassty Summit TCT Asia Pacific 2008

Fluid dynamics and rheology in bifurcation lesions

Gérard Finet MD PhD

Department of Hemodynamics and Interventional Cardiology

Cardiovascular Hospital - Hospices Civils de Lyon INSERM Unit 886 Claude Bernard University Lyon 1 Lyon - France gerard.finet@univ-lyon1.fr

The geometry of Nature Coronary artery bifurcations

Finet G. et al. EuroIntervention 2007

Vascular branching :

- distributive function
- hemodynamic function

Multi-scale analysis

Quantification of coronary artery bifurcations according to mother-vessel diameter Values obtained on quantitative coronary bifurcation angiography

	For all
# of bifurcation	173
D_m (mean7DS)	3.339 ± 0.948
D _{d-larger} (mean7DS)	2.708 ± 0.774
D _{d-smaller} (mean7DS)	2.236 ± 0.689
Reduction in mm (mean7DS)	0.631 ± 0.365
% reduction	18.9
Mean ratio	0.678

Variables are presented as mean \pm SD D in mm D_m : Diameter of the mother vessel $D_{d\text{-larger}}$: Diameter of the larger daughter vessel $D_{d\text{-smaller}}$: Diameter of the smaller daughter vessel Reduction: difference between the diameter of mother vessel and the diameter of the larger daughter vessel Ratio: $D_m/(D_{d\text{-larger}} + D_{d\text{-smaller}})$

Finet G. et al. EuroIntervention 2007;3:1-9.

For an incompressible fluid, The continuity formula is: **Qo1+Qo2=Qi** Q=SV If V=constant then :

Distribution of the 173 sets of mother-vessel diameters, as measured and calculated according to the 3 laws

The linear law ($R=\overline{0.678}$) is found to be the most exact: the flow conservation law overestimates and Murray's law underestimates the calculated mother-vessel diameter

Finet G. et al. EuroIntervention 2007;3:1-9.

Tanaka et al. Am J Physiol Heart Circ Physiol 1999; 276:2262-2267 Murray CD. Proc Natl AcadSci USA 1926:12:207-214 Suwa N. Principle of pathomorphology. Tokyo, Iwanami 1981

Mechanical forces in the vascular wall

Tanaka et al. Am J Physiol Heart Circ Physiol 276:2262-2267, 1999.

Wall shear stress

Wall shear stress distribution in bifurcation

Taken from Caro et al, 1978

Taken from G. Giannakoulas (EBC 2008)

Flow behaviour in an normal bifurcation

Fabregues et al, 1998

G. Giannakoulas, G. Giannoglou, 2007

Hemodynamic Shear Stresses in Mouse Aortas Implications for Atherogenesis

Suo et al. Atheroscler Thromb Vasc Biol 2007;27:346.

Atherosclerotic lesion size and vulnerability are determined by patterns of fluid shear stress

Cheng et al. Circulation 2006;113:2744-53.

The distribution of the low WSS values is in accordance with the localization of atherosclerosis lesion (LM bifurcation)

Plaque formation and Plaque progression

Flow behaviour in a stented coronary bifurcation

Recirculating zone and/or low Flow Favor Atherosclerosis or NIH

Traub & Berk, ATVB 1998 Wentzel, 2001

Struts protruding into the lumen generate very high stent shear stress (swss) values Concomitant areas of high and low swss values <u>favor</u>:

- Platelet activation & deposition (Moake, 1988, Spijker, 2003)
- Thromboembolic complications (Bluestein, 2002)

Arterial bifurcation is a morphological singularity of the vascular tree

Despite its seeming complexity the vascular bifurcation tree turns out to be a sophiticated solution: *a maximum cost/benefit ratio*

Coronary bifurcation geometry is invariable whatever the observation scale and precisely described by a *fractal ratio*, this ratio can be very useful in our daily practice of angiography and angioplasty

$$D_{mother \ vessel} = \underline{0.678} \left(D_{daughter \ vessel \ 1} + D_{aughter \ vessel \ 2} \right)$$

Flow dynamics, rheology, and geometry interact

The occurrence of atherogenesis, atherosclerosis, and thrombosis are closely linked to local hemodynamic factors

Stented bifurcation can become focus of flow disturbances and complications