Absorbable Metal Stent, Clinical Update and DREAMS: Concept and preclinical Data

Ron Waksman, MD

Professor of Medicine (Cardiology) Georgetown University, Associate Director Division of Cardiology Washington Hospital Center Washington DC

1

Complete occlusion of the left pulmonary artery after de-banding and closure of the arterial duct with a clip (the device with three markers is for calibration purposes)

Crossing the stenosis with a guide wire angiography revealed reperfusion

Implantation procedure of Mg Stent 3.0/10mm with a contrast filled balloon catheter

At one week follow up after Mg Stent the left lung was reperfused

Why bio-absorbable stents?

Provides stent scaffolding and radial strength properties as long as needed to ensure an open lumen - same as a permanent stent

Different to permanent stents:

- Leaves no stent behind long-term (no chronic inflammation, no long-term impact on local vasomotion)
- No "Full metal jacket" makes later treatments of the same segment easier (e.g., surgical bypass)
- MRI / CT compatibility (allows non-invasive followups)
- Potentially: no late stent thrombosis and no need for prolonged antiplatelet therapy

Absorbable Metal Stent

Biocompatibility – BIOTRONIK Magnesium Alloy

Magnesium and the human body

Essential element for human body, involved in the synthesis of more than 300 enzymes

Physiologically occurrence: 4th most common mineral

- Quantity in human body: ~ 20 g
- Daily need (adult): ~ 350 mg

Quantity in the intracellular space: > 40%

BIOTRONIK AMS features

Weight of a 3.0x10mm stent: ~ 3 mg

Complete absorption: ≈ 12 weeks

First generation AMS device (AMS 1)

- Diameter:
- 3.0 and 3.5mm

• Length:

- 10mm and 15 mm

Magnesium alloy device

- Weight of a magnesium stent: ~ 3 mg
- Complete absorption: several months
- High collapse pressures

Analysis of degradation products by EDX analysis

Compatibility of AMS in MRI and multi-slice CT

Magnetom (Sonata, 1.5 T, Siemens)

- No stent artefact
- Optimal vessel lumen imaging

CT compatibility of AMS

.....

16-row MSCT

Clinical <u>Performance and Angiographic Res</u>ults of the Coronary <u>Stenting with Absorbable Metal Stents</u>

Principal Investigator: Prof. Raimund Erbel

PROGRESS AMS 1

13

PROGRESS: Clinical Results

NLD 014-002

28 Months

AUS 004-001

16 Months

IVUS Analysis

IVUS Stent Volume

IVUS CSA

IVUS Intimal Hyperplasia Volume

First evidence of vessel flexibility in AMS stented area by angio pre/post nitroglycerin

Vessel Reactivity

induced vasodilatation in Permanent Metal Stent (PMS) control patients and Absorbable Metal Stent (AMS) patients within stent and in proximal reference segments at 4 months post implant.

Courtesy of Dr Miles Dalby Royal Brompton & Harefield

15 months after AMS implantation in human

- Very thin neointima
- Perfect ingrowth of AMS
- Completed healing of the stented vessel

Conclusions - PROGRESS 1

- The AMS technology is feasible (high technical and procedural success), absorption of the device as intended
- The AMS provided safety (no death, no MI, no stent thrombosis)
- The study met the primary endpoint (MACE < 30%)
- Further improvement of the AMS 1 technology are needed to improve efficacy for coronary use

Results PROGRESS 1 - IVUS

Contribution to lumen loss

Negative remodeling/ recoil Thickening of extra-stent tissue

In-stent neointima

13.5%

41%

Selection trial - Stent structure after 4 weeks

Description of new AMS 2 device

Bare stent (no coating)

- Special Magnesium alloy
- Refined stent design
- Stent range
 - Diameters: 3.0 and 3.5mm
 - Lengths: 10 and 15 mm
- 6F compatible system, RX catheter

Combination trial - Angiography

Combination trial-Representative histology 4 weeks

Combination trial -Representative stent structure at 2 weeks

AMS 1

AMS 2

Combination trial -Representative stent structure at 4 weeks

AMS 1

AMS 2

Histology 4 weeks

.....

Stent structure at 3 month

Combination trial - Histomorphometry

Status AMS 2 - Summary

- The optimization of both the Magnesium alloy and the stent design contribute to a longer stent integrity in animal
- The new AMS generation with increased integrity shows significantly improved efficacy in animal

DREAMS concept

- Degradable carrier from Magnesium alloy
- Effective anti-proliferativ drug
- Specialized proprietary matrix to cope with degradation of Magnesium alloy
 - Non-permanent polymer
 - Optimized rate of drug elution

DREAMS DRUG-Eluting Stent System

Brachytherapy and AMS - Study design

Brachytherapy and AMS - Histopathology

41

Brachytherapy and AMS - representative images

Status of AMS 2007

- Safe in human coronaries
- Safe in peripheral arteries (tibial)
- Absorbed as intended < 90 days
- Fully compatible with CT or MRI angiography
- Restenosis mainly due to early recoil and neointima formation
- New Generations AMS under preclinical testing
- Resume Clinical testing to be announces

