Renal Artery Intervention: Top Five No-Nonsense Tips and Tricks for Successful Renal Artery Stenting

John R. Laird, MD Professor of Medicine Medical Director of the Vascular Center UC Davis Medical Center

No-Nonsense Tip #1

Don't Hurt that Kidney. Do Everything You Can to Safely Engage the Renal Artery!

Atheroembolism during PTRA

Optimal Technique

Severe atherosclerotic disease of abdominal aorta

- Minimize catheter manipulation in the aorta
 - Engage renal artery with softer diagnostic catheter (telescoped inside guide catheter)
 "No touch" technique
 - "No touch" technique
- Consider brachial artery approach for heavily diseased abdominal aorta or extreme downward take-off of renal artery
- Consider embolic protection for high risk cases with appropriate anatomy

"No Touch" Technique

No-Nonsense Tip #2

Don't Hurt that Kidney. Do Everything You Can to Reduce the Risk of Contrast Induced Nephropathy!

Optimal Technique

Severe Baseline Renal Insufficiency

- Pretreatment for contrast nephropathy:
 - Hydration
 - Mucomist
 - Sodium Bicarbonate
- Minimize contrast use:
 - DSA
 - Low or iso-osmolar contrast
 - Strict discipline with injections
 - IVUS
- Distal protection?

No-Nonsense Tip #3

Don't Hurt that Kidney. Use Embolic Protection in High Risk Cases!

Optimal Renal EPD?

Distal Filtration

- Enables maintenance of flow throughout the procedure
- May allow small but important particles through

Renal Artery Stenting with EP in Patients with Ischemic Nephropathy

- 83 arteries treated in 63 consecutive patients from May 2002 to February 2005
- All patients had baseline CRI with a documented decline in renal function over the preceding 6 months
- CE-MRA used in the work-up in all patients
- All patients had an identical "primary filter passage" technique and stenting
- All patients had a minimum 6 months follow up

Filter Contents (in pts that did not deteriorate)

Macroscopic emboli present in 38/63 filters (60%)

Filter contents	Improved	Stabilized or Unchanged Decline	Total (%)
Positive	20	18	38 (60%)
Negative	5	20	25 (40%)
Total	25	38	63 (100%)

Even Patients with positive filter contents had significantly improved outcome (p= 0.01)

Holden, et al. Kidney International, 2006

Renal Artery Stenting with EP in Patients with Ischemic Nephropathy

Level of pre-intervention CRI

	Mild	Moderate	Severe	Total
Improved (12(52%)	8(32%)	5(33%)	25(40%)
Stabilized	11(48%)	15(60%)	10(67%)	36(57%)
Unchanged decline	0(0%)	2(8%)	0(0%)	2(3%)
Total	23	25	15	63

97% of patients had improved or stabilized renal function at 6months

Holden, et al. Kidney International, 2006

No-Nonsense Tip #4

This is aorto-ostial disease. Know where the ostium is!

Eachniques of Renal Artery Intervention

RIGHT

Technique Pearl

Optimal Technique

Ostial Disease

- Identify the true ostium
 angulated views
- Leave stent 1-2 mm into aorta
- Account for stent shortening
- Confirm complete ostial coverage

No-Nonsense Tip #5

Use IVUS, Particularly if you are Uncertain About the Final Result Renal Artery Intervention Potential Benefits of IVUS

- Precise vessel sizing
- Minimize contrast use
- Document full stent expansion and stent wire apposition
- Document complete ostial coverage with stent
- Accurate assessment of distal edge dissections

Intramural Hematoma Distal to Renal Stent

Following Treatment with Additional Stent

Severe Dissection Distal to Renal Stent

Severe Dissection Distal to Renal Stent

Documenting Ostial Coverage

Results

153 Renal Arteries in 131 Patients

Procedural Success	100% *
# of Stents 1	.10 <u>+</u> 0.25
# of balloons 1	.62 <u>+</u> 0.73
Need for further balloon use by IVUS	24%
Need for additional stent by IVUS	4.5%
Apposition/Expansion by final IVUS	100%
Contrast use (ml)	74 <u>+</u> 18
* No cases of acute or sub-acute	stent thrombosis

Dangas, Laird, et al. JEVT 2001

Conclusions

- The greatest risk of the procedure is atheroembolism to the kidney (or other organs) during catheter manipulation in the aorta or renal artery
 - -Technique matters!
 - It's not the same as coronary artery intervention!