Renal Artery Intervention: Top Five No-Nonsense Tips and Tricks for Successful Renal Artery Stenting

John R. Laird, MD
Professor of Medicine
Medical Director of the Vascular Center
UC Davis Medical Center
No-Nonsense Tip #1

Don’t Hurt that Kidney. Do Everything You Can to Safely Engage the Renal Artery!
Atheroembolism during PTRA
Optimal Technique

Severe atherosclerotic disease of abdominal aorta

- Minimize catheter manipulation in the aorta
 - Engage renal artery with softer diagnostic catheter (telescoped inside guide catheter)
 - “No touch” technique
- Consider brachial artery approach for heavily diseased abdominal aorta or extreme downward take-off of renal artery
- Consider embolic protection for high risk cases with appropriate anatomy
“No Touch” Technique
No-Nonsense Tip #2

Don’t Hurt that Kidney. Do Everything You Can to Reduce the Risk of Contrast Induced Nephropathy!
Optimal Technique

Severe Baseline Renal Insufficiency

- Pretreatment for contrast nephropathy:
 - Hydration
 - Mucomist
 - Sodium Bicarbonate
- Minimize contrast use:
 - DSA
 - Low or iso-osmolar contrast
 - Strict discipline with injections
 - IVUS
- Distal protection?
No-Nonsense Tip #3

Don’t Hurt that Kidney. Use Embolic Protection in High Risk Cases!
Optimal Renal EPD?
Distal Filtration

- Enables maintenance of flow throughout the procedure
- May allow small but important particles through
Renal Artery Stenting with EP in Patients with Ischemic Nephropathy

- 83 arteries treated in 63 consecutive patients from May 2002 to February 2005
- All patients had baseline CRI with a documented decline in renal function over the preceding 6 months
- CE-MRA used in the work-up in all patients
- All patients had an identical “primary filter passage” technique and stenting
- All patients had a minimum 6 months follow up

Filter Contents
(in pts that did not deteriorate)

Macroscopic emboli present in 38/63 filters (60%)

<table>
<thead>
<tr>
<th>Filter contents</th>
<th>Improved</th>
<th>Stabilized or Unchanged Decline</th>
<th>Total (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>20</td>
<td>18</td>
<td>38 (60%)</td>
</tr>
<tr>
<td>Negative</td>
<td>5</td>
<td>20</td>
<td>25 (40%)</td>
</tr>
<tr>
<td>Total</td>
<td>25</td>
<td>38</td>
<td>63 (100%)</td>
</tr>
</tbody>
</table>

Even patients with positive filter contents had significantly improved outcome (p=0.01)

Renal Artery Stenting with EP in Patients with Ischemic Nephropathy

<table>
<thead>
<tr>
<th>Level of pre-intervention CRI</th>
<th>Mild</th>
<th>Moderate</th>
<th>Severe</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improved</td>
<td>12(52%)</td>
<td>8(32%)</td>
<td>5(33%)</td>
<td>25(40%)</td>
</tr>
<tr>
<td>Stabilized</td>
<td>11(48%)</td>
<td>15(60%)</td>
<td>10(67%)</td>
<td>36(57%)</td>
</tr>
<tr>
<td>Unchanged decline</td>
<td>0(0%)</td>
<td>2(8%)</td>
<td>0(0%)</td>
<td>2(3%)</td>
</tr>
<tr>
<td>Total</td>
<td>23</td>
<td>25</td>
<td>15</td>
<td>63</td>
</tr>
</tbody>
</table>

97% of patients had improved or stabilized renal function at 6 months
No-Nonsense Tip #4

This is aorto-ostial disease.
Know where the ostium is!
Techniques of Renal Artery Intervention
Technique Pearl
Optimal Technique

Ostial Disease

- Identify the true ostium – angulated views
- Leave stent 1-2 mm into aorta
- Account for stent shortening
- Confirm complete ostial coverage
No-Nonsense Tip #5

Use IVUS, Particularly if you are Uncertain About the Final Result
Renal Artery Intervention

Potential Benefits of IVUS

- Precise vessel sizing
- Minimize contrast use
- Document full stent expansion and stent wire apposition
- Document complete ostial coverage with stent
- Accurate assessment of distal edge dissections
Intramural Hematoma Distal to Renal Stent
Following Treatment with Additional Stent
Severe Dissection Distal to Renal Stent
Severe Dissection Distal to Renal Stent
Documenting Ostial Coverage

Baseline

13 mm Stent
Results

153 Renal Arteries in 131 Patients

<table>
<thead>
<tr>
<th>Procedural Success</th>
<th>100% *</th>
</tr>
</thead>
<tbody>
<tr>
<td># of Stents</td>
<td>1.10±0.25</td>
</tr>
<tr>
<td># of balloons</td>
<td>1.62±0.73</td>
</tr>
<tr>
<td>Need for further balloon use by IVUS</td>
<td>24%</td>
</tr>
<tr>
<td>Need for additional stent by IVUS</td>
<td>4.5%</td>
</tr>
<tr>
<td>Apposition/Expansion by final IVUS</td>
<td>100%</td>
</tr>
<tr>
<td>Contrast use (ml)</td>
<td>74±18</td>
</tr>
</tbody>
</table>

* No cases of acute or sub-acute stent thrombosis

Dangas, Laird, et al. JEVT 2001
Conclusions

• The greatest risk of the procedure is atheroembolism to the kidney (or other organs) during catheter manipulation in the aorta or renal artery
 – Technique matters!
 – It’s not the same as coronary artery intervention!