When is Revascularization Considered in Renal Artery Stenosis?

William A. Gray MD Director of Endovascular Se Associate Professor of Clinical Columbia University Medical The Cardiovascular Research F

M3D/TOF/FSPGR/45 TR:6.1 TE:1.3/Fr EC:1/1 31.2kHz

FOV:24×24 2.8thk/0.0sp 34/00:30 256X160/1.00 NEX

Renovascular disease: incidence

- <1% in general, but more in selected populations:</p>
 - Iliofemoral arterial disease: 30%-40%
 - Carotid disease: 20%-30%
 - Coronary artery disease: 20%-30%
 - Congestive heart failure: 30%
 - ESRD: 20%
- 80% atherosclerotic/20% fibromuscular dysplasia
- In general, the severity of associated atherosclerotic disease correlates with renal artery stenosis severity

Renovascular disease: pathophysiology

Hypertension

- Renal parenchymal hypoperfusion with activation of the renin-angiotensin-aldosterone system
 - Vasoconstriction
 - Aldosterone-mediated volume expansion
 - Endothelial dysfunction (chronic changes)
- Modulated by contralateral kidney naturesis and ipsilateral capsular collaterals

Renal insufficiency

- Ipsilateral chronic hypoperfusion and progressive "ischemic nephropathy"
- Contralateral hypertensive arteriolar nephrosclerosis
- Continuous cholesterol/atheromatous embolization?

Renal Artery Stenosis is a Progressive Problem

- Review of 5 angiographic trials
- Progression in 49%
- Progression to occlusion in 14%

Greco BA and Breyer JA. Semin Neph 1996;16:2-11.

Columbia University Medical Center

RAS Progression

RAS progression according to time between studies (N = 1189)

CARDIOVASCULAR RESEARCH

Crowley JJ, et al: Am Heart J 1998;136:913-8.

Risk of atrophy in kidneys with atherosclerotic renal artery stenosis

- 122 patients with at least one renal artery stenosis/204 kidneys followed for a mean of 33 months
- Patients followed with Renal Artery Duplex Ultrasonography performed every six months

CARDIOVASCULAR RESEARCH F O U N D A T I O N Kidney International 1998;53:735-42

Risk of atrophy in kidneys with atherosclerotic renal artery stenosis

Renal Atrophy According to Baseline Renal Artery Disease

CARDIOVASCULAR RESEARCH

OUNDATION

Kidney International 1998;53:735-42

Columbia University Medical Center Loss Of Renal Function Disease progression is associated with a decline in renal function.

Crowley

CARDIOVASCULAR RESEARCH

Crowley JJ, et al: Am Heart J 1998;136:913-8.

Renal artery stenosis is an independent predictor of mortality

Mulivariate Analysis

Renovascular disease: medical therapy

- In unilateral disease, ACEI and ARB's are safe and effective
- Beta-blockers are also effective
- Medications usually effective in controlling hypertension associated with RAS
- However, renal size and GFR continue to decrease even with good hypertensive control
- Compared with surgery, long-term mortality with medical therapy is worse

Angioplasty

- Limited by suboptimal acute (<80%) and longterm success rates (restenosis 20%-25%)
- New England Journal of Medicine 2001
 - ~100 patients randomized to either medical therapy or renal angioplasty
 - Results: ½ medical patients crossed-over to angioplasty, and an overall reduction in antihypertensive medication in angioplasty group was observed
 - Intention-to-treat analysis: no difference in Rx
 Conclusions not supported by the data generated

Columbia University Medical Center

Intervene in the Appropriate Scenario

- Dialysis-Dependent Renal Failure
- Chronic Renal Insufficiency
- Refractory/Resistant Hypertension
- Cardiac Disturbance Syndrome
- Need for Use of ACEI/ARB
- Unilateral Renal Artery Stenosis

Does renal stenting preserve renal function?

• Observational study of stenting in patients with:

- Chronic renal insufficiency (Cr $\geq 1.5 \leq 4.0$ mg/dL)
- Global renal ischemia (≥ 70% stenosis)
 - Bilateral RAS
 - Unilateral RAS with solitary kidney
- Renal function
 - regression lines of 1/SCreat over time

Watson et al: Circulation 2000;102:1671

Renal stenting: effect on renal function

Meta-Analysis: PTRA vs Medicine in Hypertension and RAS

Table 1. Characteristics of Included Studies Comparing the Effects of Medical Therapy with Balloon Angioplasty for the Treatment of Hypertension with Renal Artery Stenosis

	Number of Patients		Bilateral Stenosis				Crossover from Medical Therapy	
Study (Reference)	Angioplasty	Medical Therapy	Number (%)	Follow-up (months)	Run-In Period	Primary Outcome	to Angioplasty Number (%)	Comment
DRASTIC (12)	56	50	24 (23)	12	_	Office blood pressure	22 (44)	3-month analysis before, 12- month analysis after crossover
EMMA (14)	23	26	0	6	2 to 6 weeks	24-hour ambulatory blood pressure	7 (27)	Endpoints documented before crossover in medical therapy group
SNRASCG (13)	25	30	28 (51)	6	4 weeks	Office blood pressure	0	Results of patients with unilateral and bilateral renal artery stenosis were reported separately

DRASTIC = Dutch Renal Artery Stenosis Intervention Cooperative trial; EMMA = Essai Multicentrique Medicaments vs Angioplastie trial; SNRASCG = Scottish and Newcastle Renal Artery Stenosis Collaborative Group trial.

Meta-Analysis: PTRA vs Medicine in Hypertension and RAS

Am J Med 2003;114:44-50

Data-supported facts about renal therapy

- Is superior to balloon-angioplasty
- Is safer than surgery
- Can achieve clinical goals in *certain* individual patients
 - Improve control of HTN
 - Preserve renal function
 - Control of cardiac disturbance syndromes (CHF/Angina)

CARDIOVASCULAR RESEARCH F O U N D A T I O Ns

1. Rocha-Singh KJ et al. Catheter Cardiovasc Interv 1999Jun;47(2):173-4 2. Mukherjeea D et al. Am Heart J 2001 Nov 1;88(9): 1064-6

Renal artery stenting vs. angioplasty

Study has shown stenting (n=40) superior to angioplasty (n=15) due to late deterioration of the angioplasty results, especially in patients with baseline azotemia

Rundback JH et al. Heart Dis 1999 Jul-Aug; 1(3): 121-5

Age and its relationship to renal artery stenting

Compared to patients <75 (n=80), patients >75 years (n=19) still have a significant antihypertensive effect after stenting, and no significant difference in renal deterioration or progression to dialysis.

Bloch et al. Am J Hypertens Oct; 14(10): 983-8

Patients with solitary kidney and renal stenting

- A recent small (n=26) in this patient subset demonstrated improvement in renal function, as assessed by stabilized creatinine levels in 62% of patients stented, but continued renal deterioration in 38% of those treated.
- Best predictor of improvement was baseline creatinine levels---conclusion: intervene early in these patients

1. Chatziioanou A et al. Eur J Vasc Endovasc Surg 2002 Jan;23(1):49-54

Renal artery stenting and embolic protection

- A small study using Percusurge as the embolic protection device in 32 procedures demonstrated feasibility and safety. Total occlusion time averaged 6.55 minutes.
- At ~6 month follow-up no deterioration in renal function was noted, and improvement in hypertension was noted.
- "Debris was returned in all cases"

1. Henry M et al. J Endovasc Ther 2001 Jun;8(3):227-37.

Large series

- 363 renal stenting procedures analyzed
- 100% procedural success, no deaths or surgery
- Median 16 month follow-up:
 - 70% had reductions in BP regardless of baseline renal function
 - SBP decreased 164 mmHg to 142 mmHg p<0.001
 - In patients with baseline renal insufficiency, 73% improved or stabilized and 27% continued deterioration
 - Post-procedural azotemia 12%, persistent in only 2%
 - 10% mortality, predicted by CAD and azotemia
 - Restenosis low and predicted by vessel size <4.5mm

Lederman RJ et al. Am Heart J 2001 Aug; 142 (2): 314-23

Renal artery stenting: Conclusions

- Good acute and long-term success rates
- Complication rates improved and low
 Hemorrhage, embolism, renal failure
 Mortality <1%
- Efficacy
 - Improved hypertension in 2/3 (cure 10%)
 - Stabilized or improved renal function in 2/3
 - Improved CHF and coronary ischemia control

UK MULTI-CENTRE TRIAL IN ATHEROSCLEROTIC RENOVASCULAR DISEASE

ASTRAL

Angioplasty and STent for Renal Artery Lesions

Columbia University Medical Center

ASTRAL Trial Schema

ASTRAL Trial

- No baseline differences between groups in:
 - Blood pressure
 - Renal function
 - Angiography
 - Medical treatment

Procedural safety

- 24 patients experienced an immediate postop complication
 - Revascularisation = 23 / 308 (7%)
 - Medical = 1 / 18 (6%)

Mean change in SCr

Mean change in systolic BP

Time to first MI, stroke, vascular death or hospitalization for angina, fluid overload or heart failure

Mortality

Summary

- Currently no evidence of a benefit for revascularisation on renal function in the ARVD patients entered into ASTRAL: those in whom clinicians 'uncertain' of whether to revascularize
- Also no evidence of differences between the arms for any of the secondary endpoints (i.e. blood pressure, major events)
- No evidence of differences in treatment effect across the various subgroups
- Longer follow-up is needed
- Plan to update meta-analysis published in NDT in 2003 to include ASTRAL and other trials

Critique

- The indications for the patients entered into this study are unclear:
 - ? Hypertension
 - If so, was it resistant?
 - Renal insufficiency
 - The presence of a renal stenosis without clinical indication?
- Severity of stenosis
 - Method of measurement?
 - Physiologic testing?
- Complication rate excessive

Renovascular disease: therapeutic paradigm

- Evaluate probability of RAS based on risk factors
- Recommend therapy based on:
 - Age
 - Adequacy of blood pressure control
 - Renal function/size
 - Bilateral disease or solitary kidney
 - Associated conditions (CHF, CAD)
 - Atherosclerotic vs. fibromuscular origin
 - Decreasing procedural morbidity
 - ?drug-eluting stents change paradigm?

Atherosclerotic Renal Artery Stenosis

Incidence

- General Population ----- 0.1%
- Hypertension ------ 4.0%

Prevalence in an autopsy series

- **27%**
- In patients > 70 years, 62

Am J Med 1964;37:14-22

Columbia University Medical Center

Atherosclerotic Renal Artery Stenosis

Incidence of RAS in Patients with Peripheral Vascular Disease

Reference	% (Total No. of Patients)
Dustan (1964)	37 (149)
Olin (1990)	39 (189)
Wilms (1990)	22 (100)
Choudri (1990)	59 (100)
Swartbol (1992)	49 (100)
Missouris (1994)	45 (127)

Scoble JE. In Renal Vascular Disease 1996:143-9

Prevalence of bilateral renal artery stenosis

Reference	Stenotic Arteries, N	Bilateral, N (%)	Method
Holley, 1964	159	105 (66)	Autopsy
Wollenweiber, 1968	109	67 (61)	Angio
Dean, 1981	41	14 (34)	Angio
Tollefson, 1991	48	14 (29)	Angio
Harding, 1992	192	52 (27)	Angio
Total	549	252 (46)	

Ann Intern Med 1993;118:712-9

Columbia University Medical Center

Renal artery stenosis: coronary artery disease and mortality

- 3987 patients underwent coronary arteriography followed by abdominal aortography
- Significant RAS defined as >75%
- Patients followed for 4 years prospectively
- 4.8% of patients with RAS
 - 0.8% with bilateral RAS

Conlon PJ, et al. *Kidney International* 2001;60:1490-7

Renal Artery Stenosis, Coronary Artery Disease, and Mortality

Conlon PJ, et al. *Kidney International* 2001;60:1490-7

Columbia University Medical Center

Renal Artery Stenosis, Coronary Artery Disease, and Mortality

Conlon PJ, et al. Kidney International 2001;60:1490-7

Columbia University Medical Center

What Does The Future Hold?

- Trial to (finally) demonstrate impact of renal artery intervention on survival, major cardiovascular events, hypertension, and (potentially) renal function
- Role of Embolic Protection Devices in renal artery intervention
- Benefit of Drug-Eluting Stents in renal artery intervention

The CORAL Trial Cardiovascular Outcomes of Renal Artery Lesions

Prospective, Randomized Trial of Patients with RAS and HTN: Stent and Med Rx vs Med Rx Alone

Primary Endpoint Events

• Cardiovascular death

- Any within 30 days of randomization
- CV death \geq 31 days
- Myocardial infarction
- Hospitalization for congestive heart failure
 - ≥30 days post randomization

Stroke

- Uncontrollable hypertension
 - > 200 systolic and or >120 diastolic mm Hg
 - all tolerable medications
- Progressive renal insufficiency
 - decrease in iohexol-determined GFR of \geq 33%
 - Persists 14 days
- Need for renal replacement therapy
 - \geq 31 days post randomization

CARDIOVASCULAR RESEARCH

Renal artery stenting: therapeutic targets

- Effective therapy for stenting in the appropriate clinical scenario
 - Truly refractory/resistant HTN with RAS
 - Renal insufficiency with ischemia to functioning renal mass
 - Cardiac disturbance syndromes with ischemia to functioning renal mass

Renal Artery Stenosis

	INCIDENCE
General population	0.1%
Hypertensive population	4.0%
HTN & suspected CAD	10 - 20%
Malignant HTN	20 - 30%
Malignant HTN & renal insufficiend	y 30 - 40%
HTN and PAD	44%

Incidence of Unsuspected RAS

 196 consecutive patients referred for coronary angiography for suspected CAD underwent (drive-by) renal angiography.

CARDIOVASCULAR RESEARCH

Columbia University

Medical Center

The Consequences: Renovascular Hypertension

Cardiovascular

Renal

Natural History of Renal Artery Disease

 Trend in untreated or medically treated renal artery stenoses for progression of stenosis (to occlusion) and loss of renal function.

CARDIOVASCULAR RESEARCH F O U N D A T I O N Zierler RE, et al: J Vasc Surg 1994;19:250.

Columbia University Medical Center

Criteria For Renal Stenting

asymptomatic

- Which lesions, if any, should be treated
 ?
 - Solitary \geq 70% stenosis.
 - Bilateral \geq 70% stenoses.
 - Unilateral \geq 70% stenosis.

Can stenting renal artery stenosis improve or stabilize renal function?

- Renal stent deployment in patients with
 Chronic renal insufficiency (Cr ≥ 1.5 mg/dL).
 - Global renal ischemia (\geq 70% stenosis).
 - Bilateral RAS.
 - Unilateral RAS with solitary kidney.
- Renal function assessed with slopes or regression lines for the reciprocal of serum creatinine over time.

Watson PS, et al: Circulation 2000;102:1671.

Stent Complications

Renal Stents	Number	Death	Dialysis	Major Comp
Blum	74	0	0	0
Harjai	88	0	0	0
Tuttle	148	0	0	4.10
Bingha-	180	0.6	0	2.60
Burket	171	0	0.7	0.70
White	133	0	0	0.75
Dorros	163	0.6	0	1.80
TOTAL	957	< 1%	< 1%	1.4%

Renal Artery Duplex Ultrasonography

Renal Artery Stenosis and Intervention Shifting Trends

- Increasing prevalence
- Heightened awareness
- Increasing detection MRA, Duplex, CTA
- Explosive growth in procedure volume

Renal Stenting Trends Charges submitted to Medicare*

Procedure	1996	1998	2001
PTA only	3780	3840	4380
Stent only	1220	2400	5740
Both	2660	5160	8400
Renal Bypass	4040		2260

<u>Changes over 5 years:</u> Renal Intervention Renal Stenting Renal Bypass Surg

+242% +364% 4X - 45%

IS THIS CHANGE JUSTIFIED???

* Extrapolated from 5 the cadata RSITY

Truth and Consequences

Progressive disease Tremendous cost to society of ESRD US hemodialysis program - >

- US hemodialysis program >\$25 billion/year by 2010
- lost wages
- effect on quality of life

Screening and Management of RAS Confounding Issues

- Absence of disease-specific symptoms

 progression is silent
- Pathophysiologic effect on kidney poorly understood
- Cause & effect relationship between lesion and clinical syndromes (e.g. HTN, CHF, azotemia) is unclear
- Difficult to predict which patients will derive benefit, or to what degree
 - Literature reflects variable results from RAR
 - Conflicting opinions about who should be

screened/treat

Renal Artery Stenosis What we don't know...

Whether individual patients will benefit What are the predictors of response to revascularization Pathophysiology to explain decline in renal function Mechanism and relative contribution of RAS to deterioration in renal function

Knowledge base in RAS lags far behind that for CAD

What have we learned from trials and experience?

Renal anioplasty (with bail-out stent) vs. primary stenting

	POBA(n=42)	STENT(n=43)	
1 [°] success (<50% residual)	24 (57%)	37 (88%)	p<0.05
6 mo patency	12 (29%)	30 (75%)	
Restenosis	48%	14%	p<0.05
Crossover	12 (29%) (5 acute)		
5			
CARDIOVASCULAR RESEARCH F O U N D A T I O N₀	van de	Ven et al, Lancet 1999 Ja	ın 23;353:282-6

Renal Stenting: Technical Success

Study series	Year of publication	Study period	No. of Arteries	Stent type	Ostial lesion (%)	Success definition	Technical success (%)
Rodriguez-Lopez [20]	1999	93 - 96	125	Palmaz	66	No RS / dissection	98
van de Ven [9]	1999	93 - 97	52	Palmaz	100	RS* < 50%	90
Henry [21]	1999	NA	104	AVE	77	RS < 20%	99
Rocha-Singh [12]	1999	93 - 95	180	Palmaz	43	#PG < 5mmHg	98
Tuttle [22]	1998	91 - 96	148	Palmaz	100	RS < 30%	98
Dorros [23]	1998	90 - 95	202	Palmaz	NA	RS < 50%	99
Rundback [24]	1998	NA	54	Palmaz	NA	RS < 30%	94
White [25]	1997	92 - 94	133	Palmaz	81	RS < 30%	99
Harden [17]	1997	92 - 95	32	Palmaz	75	RS < 10%	100
Blum [8]	1997	89 - 96	74	Palmaz	100	RS < 50%	100
Henry [26]	1996	90 - 94	64	Palmaz	53	RS < 20%	100
lannone [27]	1996	92 - 93	83	Palmaz	78	RS < 30%	99
Hennequin [28]	1994	87 - 91	21	Wallstent	33	NA	100
Rees [29]	1994	88 - 92	296	Palmaz	100	RS < 30%	98
					0000		

* RS=residual stenosis

PG=pressure gradient

~98%

Lim and Rosenfield, Curr Int Cardiol 2000,2:130-139.

Renal Stenting: Incidence of restenosis

Table 2. Restenosis Rate of Renal Stents

Study series	No. of Arteries	Arteries evaluated (%original total arteries)	Ostial lesion (%)	Stent type	Method of evaluation	Average time to evaluation(month)	Restenosis
van de Ven, 1999	52	50 (95%)	100	Palmaz	angio*	6	21%
Rocha-Singh, 1999	180	158(88%)	43	Palmaz	duplex + angio	13	12%
Tuttle, 1998	148	49 (33%)	100	Palmaz	angio	8	14%
Rundback, 1998	54	28 (52%)	NA	Palmaz	angio* + spiral CT	12	26%
White, 1997	133	80 (60%)	81	Palmaz	angio*	9	19%
Harden, 1997	32	24(75%)	75	Palmaz	angio*	6	12%
Blum, 1997	74	74(100%)	100	Palmaz	angio*	24	11%
Henry, 1996	64	54 (84%)	53	Palmaz	angio*	14	9%
lannone,1996	83	69 (85%)	78	Palmaz	duplex	11	14%
Dorros, 1995 [30]	92	56(61%)	100	Palmaz	angio*	7	25%
Hennequin, 1994	21	20 (95%)	33	Wallstent	angio*	29	20%
Rees, 1994	296	150 (51%)	100	Palmaz	angio*	7	33%
		·			weighted average	10	~20%

weighted average

CARDIOVASCULAR RESEARCH OUNDAT

Lim and Rosenfield, Curr Int Cardiol 2000 2010 SITY MEDICAL CENTER

Renal artery stenosis in 2008 Possible targets of stenting

- Renal Preservation
- Cardiac Disturbance Syndromes

• Mortality (?)

Treatment Effect: Hypertension

•72 y.o. male h/o of Inf MI, now unstable angina
•Cath: critical 3V CAD with LVEF 40%
•Cr 1.1
•BP 170-230/80-90 on 5 anti-hypertensive meds

Treatment Effect: Hypertension

<u>Post-stent</u> Uneventful CABG Asymptomatic at 3 year f/up; Cr 1.0 SBP 140-160 on 3 Anti-HTN meds

CARDIOVASCULAR RESEARCH F O U N D A T I O N Medical Center

Stenting effect on hypertension: ASPIRE 2 Trial

		<u>Systolic pressure</u>	
Visit	Ν	Mean±SD	P-value
Baseline	208	167.6±25.2	
Discharge	202	147.6±22.3	<0.001
1 month	196	151.5±24.4	<0.001
6 month	182	149.2±22.9	<0.001
9 month	178	149.5±23.8	<0.001
24 month	158	149.3±25.3	<0.001

Progression to occlusion increases with severity of stenosis

Schrieber MJ, et al. Urol Clin North Am 1984;11:383

Implications of renal stenosis Progressive loss of renal mass

- Duplex q6 months on 122 pts, 204 kidneys
- Renal atrophy (loss of 1cm length)
- mean f/up 33 months

<u>Duplex finding</u>	Renal Atrophy
normal	5.5%
<60%	11.7%
<u>>60%</u>	20.8%

- Other factors correlated with renal atrophy:
 - elevated Creatinine
 - SBP>180

CARDIOVASCULAR RESEARCH

PSV>400cm/sec, EDV<u><</u>5cm/sec

Caps et al, Kidney Int'l, 1998,735-42

Renal artery stenosis Progression and timing of intervention

- Progression is unpredictable in the individual patient
 - Occurs in significant percentage of patients, who stand to suffer consequences
- Waiting until progression is measurable by atrophy or notable decline in renal function may be too late for RAR to have desired impact

- 72 year old male
- Acute anuric renal failure immediately post CABG

• Failure to thrive

IVERSITY TER

Post-Stent

- Immediate urine production •
- Creatinine down to 3.5

ightarrow

CARDIOVASCULAR RESEARCH

7 year follow-up: creatinine=4.2

Columbia University Medical Center
Effect On Renal Function: ASPIRE 2 Trial

Creatinine

Visit	Ν	Mean±SD	P-value
Baseline	207	1.36±0.52	
1 month	187	1.35±0.62	0.74
6 month	174	1.41±0.61	0.03
9 month	173	1.40±0.61	0.31
24 month	153	1.46±0.81	0.04

Uncertainties in renal disease therapy

- How to <u>predict</u> the effect of RAR on control of HTN, renal function, and mortality in a given patient with RAS?
- What represents a "significant" percent stenosis or gradient?
- How does acute and long-term success vary based on factors like vessel diameter, resistive index in distal vascular bed, DM?
- What is the true rate of complications from PTRA and stenting, and what is the causality (atheroemboli, contrast, other)?
- Will distal embolic protection improve outcomes?

CARDIOVASCULAR RESEARCH

Renal Stenting Gaps in our knowledge base

s this significant?

Gradient 20 peak/11mean (5 french catheter)

Renal Artery Stenting vs Medical Therapy

Randomized Trials:

Columbi The Cardio

Jniv ty Med scular ear

I Center Foundation

Columbia University Medical Center

PTRA vs. Medical Rx for HTN

van Jaarsveld et. al, NEJM, April 2000, 342:1007

- 106 patients, randomized to PTRA vs. meds
- % diam stenosis >50
- Creatinine <2.4</p>
- Outcomes: BP, meds, renal function, patency at 3 and 12 months

PTRA vs. Medical Rx for HTN van Jaarsveld et. al, NEJM, 4/2000, 342:1007 106 patients, randomized to PTRA vs. meds PTRA Medical • SBP 179 ---> 169 180 ---> 176 • Mean 104 ---> 99 103 ---> 101 Meds 2.5 3.1 (p<.001) Creatinine 1.2 1.2 Conclusion: "For treatment of HTN and RAS, angioplasty has little advantage over drug therapy " CARDIOVASCULAR RES

PTRA vs. Medical Rx for HTN van Jaarsveld et. al, NEJM, April 2000, 342:1007

PTRA group

only 2/56 received stent (54/56 had POBA)

Medical group

- 22/50 (44%) crossed to PTRA

 - 8/50 (16%) developed renal artery occlusion

- 6/50 (12%) had >50% increase in creat (vs. 4% in PTRA group)

van Jaarsveld et. al, NEJM, April 2000, 342:1007 ISSUES

- grossly underpowered
- average 2 interventions/site
- Optimal revasc. strategy (ie.stenting) not employed
- Many occlusions and crossovers in medical group

JACC, Vol 43, 5/04, 1614-16. EDITORIAL COMMENT "Renal Artery Stenosis: 'Fortuitous Diagnosis', Problematic Therapy" -Weinrauch and D'Elia

"...studies (to date do) not address the consequences of RAS in a population."

Renal Artery Stenting Need for Large-scale Randomized Trial

Weinrauch and D'Elia JACC, Vol 43, 5/04, 1614-16.

- "Experience has demonstrated that less than half of patients undergoing (renal revascularization) benefit with respect to HTN control or rescue of an ischemic organ"
- "Review of the literature found a high incidence of CV death with no evidence for prolongation of life after RAR"

Renal Artery Stenting Need for Large-scale Randomized Trial

Weinrauch and D'Elia JACC, Vol 43, 5/04, 1614-16.

"The only benefit that should be accepted as a reason for revascularization...is one that can be measured." "In the absence of randomized controlled studies, clinicians would do well to...pursue long-term followup of this cohort to determine the significance of RAS with respect to specific heart and kidney disease outcomes..."

Renal Artery Stenosis Defining the Future

- Trial to demonstrate impact of renal artery intervention on survival, major cardiovascular events, hypertension, and renal function
- Improve case selection multivariate models to establish predictors of success or failure
- Role of Embolic Protection Devices
- Anti-restenosis therapies
 DES

• **Hypothesis**: Medical therapy with stenting of hemodynamically significant, angiographically documented, renal artery stenoses in subjects with systolic hypertension reduces the incidence of adverse cardiovascular and renal events compared with medical therapy alone.

Population:

- 1080 patients with atherosclerotic RAS
- Up to 85 US sites

Inclusion Criteria

- Systolic hypertension
 - ≥155 mm Hg
 - on \geq 2 antihypertensive medication
- \geq 1 renal artery stenosis
 - \geq 60% with a 20 mm Hg systolic pressure gradient
 - \geq 80% no pressure gradient required.

Cardiovascular Outcomes In Renal Atherosclerotic Lesions

Optimal Medical Therapy (OMT)
 All receive ARB (Candesartan)
 LDL, BP and HbA1c to guideline

OMT plus Stent Revascularization

- Angioguard embolic protection
- Genesis balloon expandable stent

Cardiovascular Outcomes In Renal Atherosclerotic Lesions

Survival free from Cardiovascular and Renal Adverse Events

- Cardiovascular or Renal Death
- Stroke
- Myocardial Infarction
- Hospitalization from CHF
- Progressive Renal Insufficiency
- Renal Replacement Therapy

RAR-Effect on Renal Function

Study series	No. of patients	Renal function		
		Improved (%)	Stable (%)	Deteriorated (%)
van de Ven, 1999	42	12%	62%	26%
Rocha-Singh, 1999	150	22%	70%	8%
Tuttle, 1998	129	15%	81%	4%
Dorros, 1998	163	18%	48%	34%
Rundback, 1998	45	20%	47%	33%
Harden, 1997	32	34%	38%	28%
V	Veighted Avera	19%	62%	19%

Lim and Rosenfield, Curr Int Cardiol 2000,2:130-139.

Columbia University Medical Center