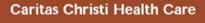
Stent Fractures: Incidence and Clinical Relevance



Conflict of Interest Statement

Within the past 12 months, I have had a financial interest/arrangement or affiliation with the organization(s) listed below.

Physician Name

<u>Company/Relationship</u>

Jeffrey J. Popma, MD

Research Grants: Cordis, Boston Scientific, Medtronic, Abbott-Guidant, Biosensors, Radiant, eV3
Medical Advisory Board: Cordis, Boston Scientific, Medtronic
Speaker's Bureau: Sanofi, BMS, Boston Scientific, Pfizer Standardized Acquisition Methodology Is Needed **To Detect Stent** Fractures **For Peripheral** And Coronary **Studies**

Original Studies

Standardized Evaluation and Reporting of Stent Fractures in Clinical Trials of Noncoronary Devices

Michael Jaff,* Michael Dake, Jeffrey Pompa, Gary Ansel, and Tony Yoder

Stent Fatigue is Multifactorial

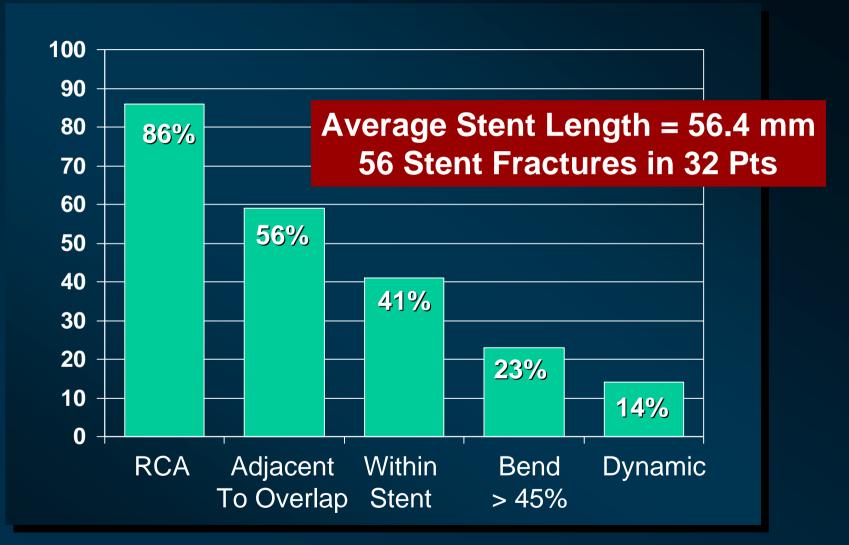
<u>Stent</u> Design Dimensions Procedural Overexpansion Placement Post-dilation Length/overlap

<u>Material</u> Elongation Yield strength Ultimate Tensile Strength Endurance Limit Grain size Processing

Anatomical Which vessel & where Compliance Angulation Dynamic motion # of cycles

Preclinical Testing: Dynamic Loading

- Dynamic loading in a vessel results in the following deformations:
 - Pulsatile (current fatigue test & FEA)
 - Bend (static bend modeling in FEA)



- Twist
- Stretch
- Above are likely a function of species, vessel (RCA, LAD, LCX) and location (proximal, distal)

SCAIACCI2: Predictors of Stent Fractures

- 1808 pts with 2920 lesions with angiographic FU in 1491 patients with 2357 lesions (80.7%)
- Definition: Obvious separation of stent
- Stent restenosis rate was 11.2%; stent fracture rate was 3.9% and stent fracture with restenosis was 1.1%
- Multivariable predictors for stent fractures with restenosis: aorto-ostial lesions; severe angulation; SVG and overlapping stents
- Coronary artery motion was also an important predictor of stent fracture with restenosis

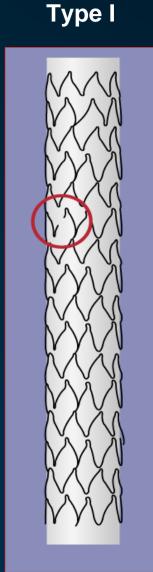
ACROSS CYPHER for CTO N=200 Patients

Rao et al JACC 2008; 51: B4 (abstract)

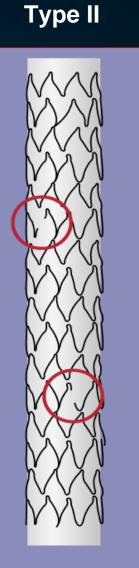
ACROSS CYPHER Overall Fracture Rate = 16%

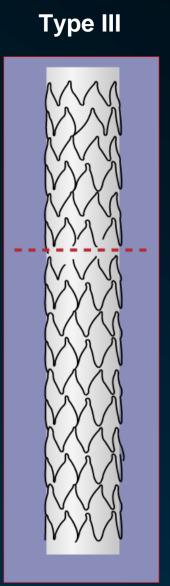
	Stent Fracture (N=32)	No Stent Fracture (N=168)	P Value
Stent length, mm	69.9	45.0	< 0.001
Overlapping stents, %	100	89.9	0.06
TLR, %	9.4	5.5	0.42
MACE, %	9.4	6.1	0.45
Stent Thrombosis, %	3.1	0	0.16
In-segment BAR. %	21.9	7.4	0.09

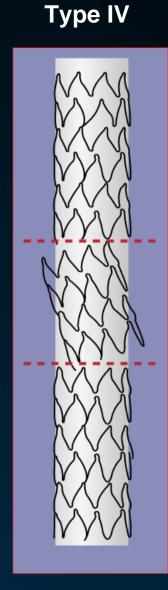
Rao et al JACC 2008; 51: B4 (abstract)


BWH Core Lab Definitions for Stent Fracture

Classification	Current Report	Allie et al ¹	Scheinert et al ²
Туре 0	No strut fracture	-	-
Туре І	Single strut fracture or gap between struts greater than 2x normal	Single strut fracture only	Minor – single strut facture
Туре II	Multiple strut fractures with V-form division of the stent	Multiple single stent fractures occurring at different sites	Moderate – facture >1 strut
Type III	Complete transverse stent fracture without displacement of fractured fragments more than 1 mm during the cardiac cycle	Multiple single stent fractures resulting in complete transverse linear fracture but without stent displacement	Severe – complete separation of stent segments
Туре IV	Complete transverse stent fracture with abundant movement and displacement of fractured fragments of more than 1 mm during the cardiac cycle	Complete transverse linear type III fracture with stent displacement	-


¹ Allie et al Endovascular Today 2004; July/August: 22-34


² Scheinert et al J Am Coll Cardiol 2005; 45:312-315


* Type 5 implies spiral fracture of stent

Single strut fracture M

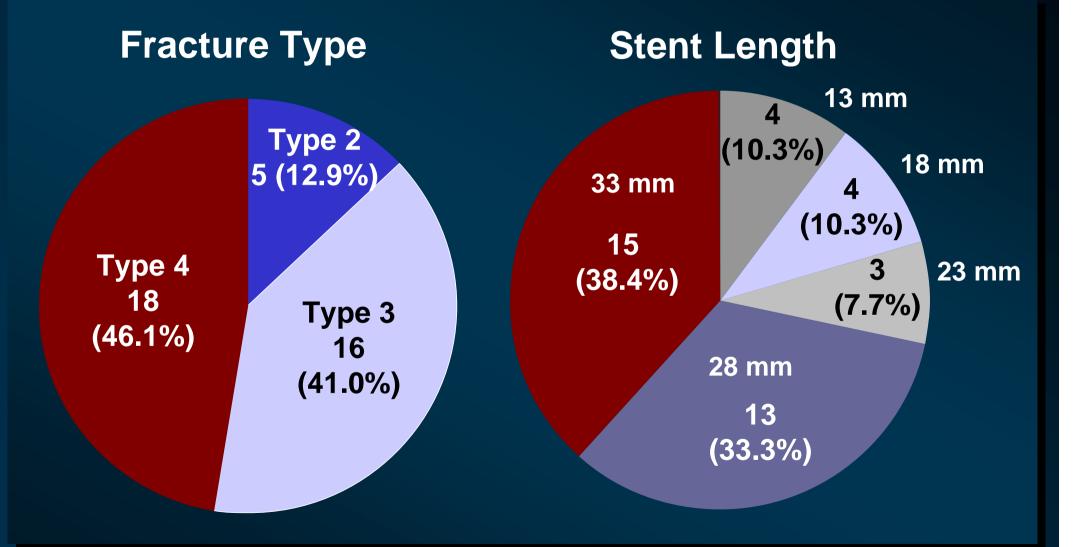
Complete transverse linear Type III fracture with stent displacement

Multiple single stent fractures; different sites

Multiple stent fractures; complete transverse linear fracture

BWH SIRUS Angiographic Analysis Did We Miss Something Important?

349 Patients in the CYPHER arm with follow-up in SIRIUS

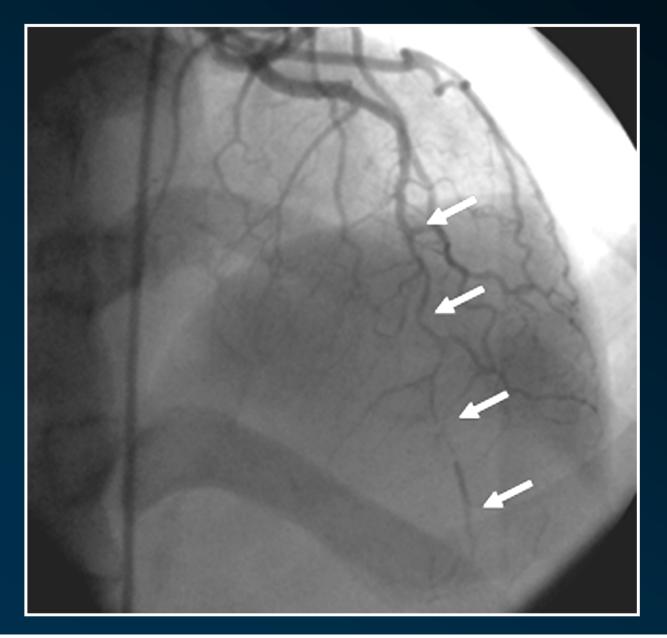

- 40 Patients with not available CINE films
- 2 patients neither of the follow-up CDs can be opened
- 2 patients all CD missing
- 305 patients analyzed with 497 follow-up angiograms
 - 4 fractures identified (1.3%),
 - 3x Fracture Type 1 (0.98%)
 - 1x Fracture Type 2 (0.33%)
- All fractures occurred with multiple stents near the site of overlap, all vessels calcified including one chronic total occlusion.
- 1 ISR at that site with TLR (Type 1 Fracture tissue growth)

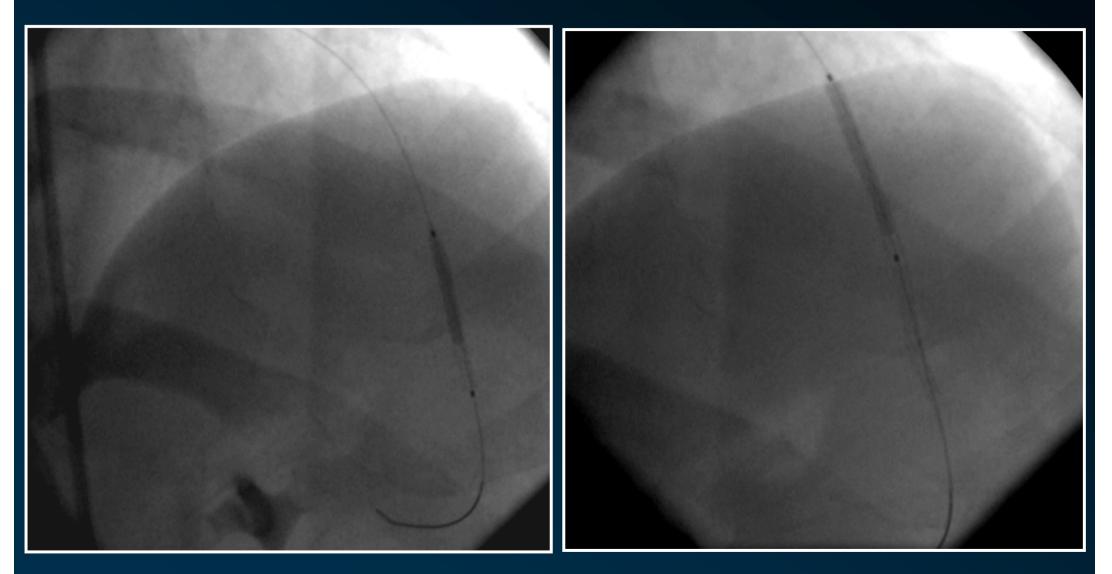
Stent Fracture: Review of Adverse Event Reports MAUDE cases between August 2003-July 2006

	226 Cases
Coronary Stents:	125
CYPHER	113
TAXUS	12
Peripheral Stents:	101
CYPHER Angiograms Forwarded to Core Lab	51 Cases
No Fracture By Available Paperwork	2
No Stent Fracture Identified	9
Bx Sonic	1
Analysis population	39 Cases
Baseline Angiogram Available	28

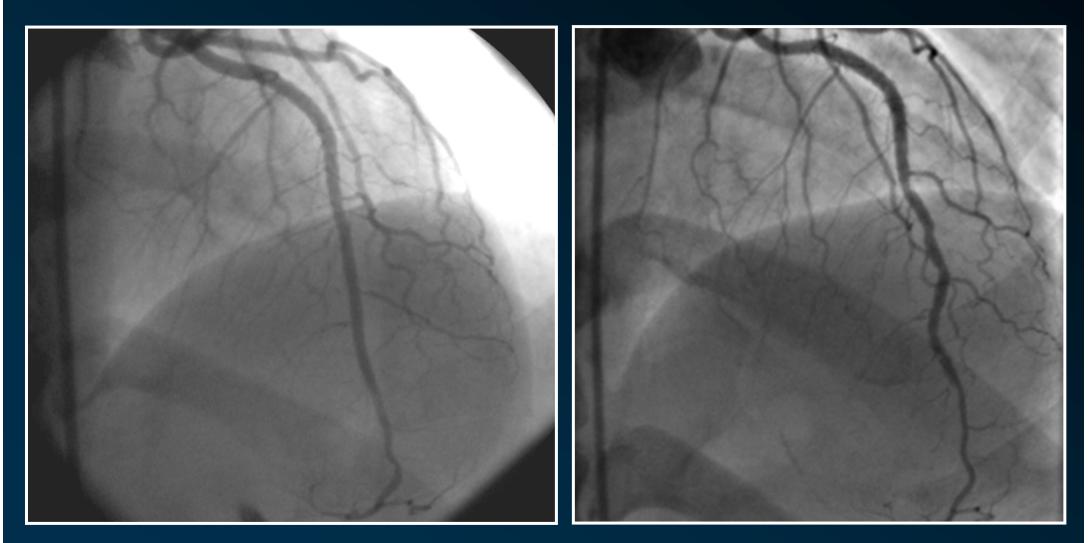
* 45 stent fractures in 39 patients

BWH Angiographic Analysis Adverse Event Reports (N=39)

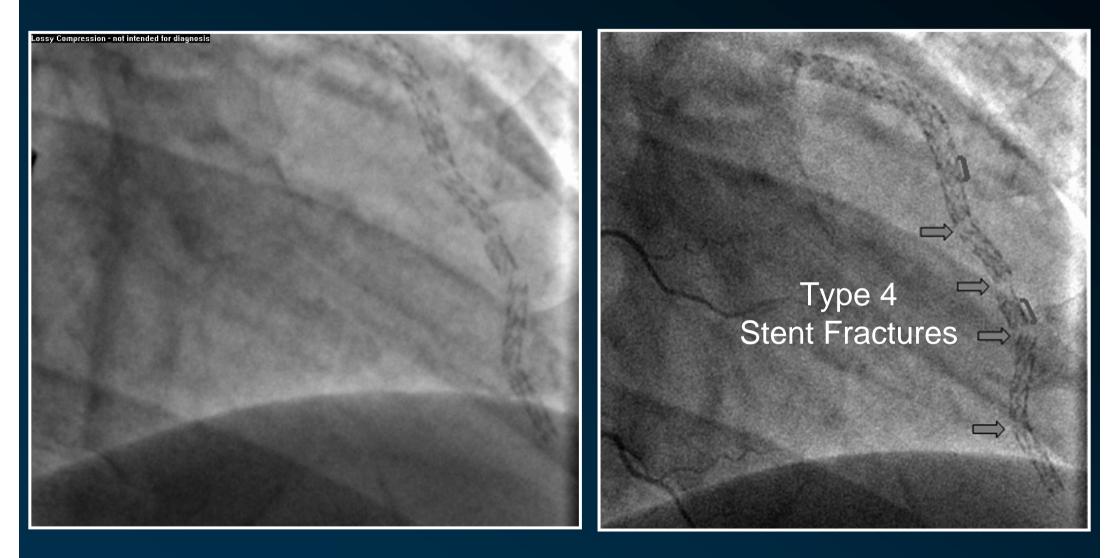

Stent Fracture:	Baseline Angiographic Findings		
Variable	Stent fracture N = 28, (%)	Sirius N = 531, (%)	P Value
Location			
LAD	12 (42.9)	234 (44.1)	0.94
LCx	4 (14.3)	134 (25.2)	0.27
RCA	12 (42.9)	160 (30.1)	0.23
Ostial Location	6 (21.4)	10 (1.9)	<0.001
Lesion Length, mm	22.1±15.9	14.4±5.8	<0.001
0-9.9 mm	7 (25.0)	106 (20.0)	0.66
10-19.9 mm	9 (32.1)	342 (64.6)	0.001
20 or greater	12 (42.9)	82 (15.4)	0.002
Angulations \geq 45 degrees	13 (46.4)	58 (10.9)	< 0.001
Proximal Tortuousity	7 (25.0)	28 (5.3)	0.002
Calcification present	19 (67.9)	91 (17.1)	<0.001
Total Occlusion	7 (25.0)	17 (3.2)	<0.001


Stent Fracture: Baseline Angiographic Findings

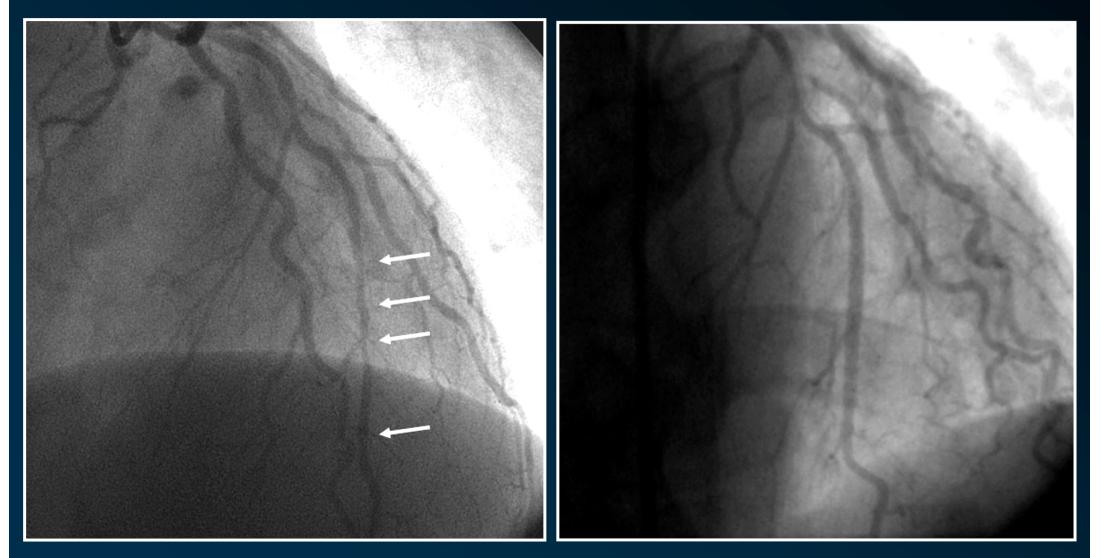
Stent fracture	Sirius	P Value
N = 28	N = 531	
2.66±0.50	2.79±0.45	0.14
0. 56±0.39	0.97±0.40	<0.001
77.8±15.3	65.1±12.6	<0.001
N = 28	N = 531	
2.06±0.48	2.38±0.42	<0.001
24.6±11.1	16.1±9.7	<0.001
2.33±0.49	2.67±0.40	<0.001
14.8±8.9	5.4±8.2	<0.001
	N = 28 2.66 \pm 0.50 0.56 \pm 0.39 77.8 \pm 15.3 N = 28 2.06 \pm 0.48 24.6 \pm 11.1 2.33 \pm 0.49	N = 28N = 531 2.66 ± 0.50 2.79 ± 0.45 0.56 ± 0.39 0.97 ± 0.40 77.8 ± 15.3 65.1 ± 12.6 N = 28N = 531 2.06 ± 0.48 2.38 ± 0.42 24.6 ± 11.1 16.1 ± 9.7 2.33 ± 0.49 2.67 ± 0.40


Stent Fracture: Follow-up Findings

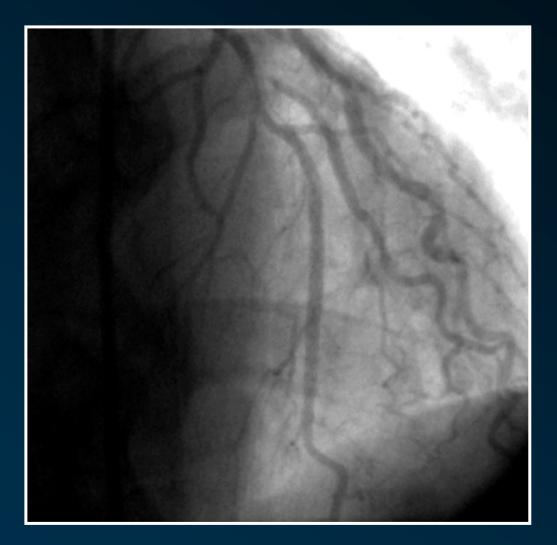
Variable	Stent fracture	Sirius	
	N = 38 (%)	N = 350 (%)	P Value
RVD, mm	2.72±0.48	2.79±0.42	0.33
Within the Segment			
Follow-up MLD	1.41±0.69	2.15±0.61	<0.001
Late Lumen Loss	0.70±0.66	0.24±0.47	<0.001
Restenosis Rate	18 (47.4)	31 (8.9)	< 0.001
Follow-up % Stenosis	48.6±23.0	23.6±16.4	<0.001
Within the Stent			
Follow-up MLD	1.52±0.82	2.50±0.58	<0.001
Late Lumen Loss	0.96±0.71	0.17±0.44	<0.001
Follow-up % Stenosis	44.1±28.5	10.4±16.5	<0.001
Restenosis Rate	18 (47.4)	11 (3.2)	<0.001
ISR Length, mm	6.55±5.96	9.1±5.8	0.01
Total occlusions	3 (7.9)	2 (0.6)	0.02
Aneurysm	5 (13.2)	2 (0.6)	<0.001



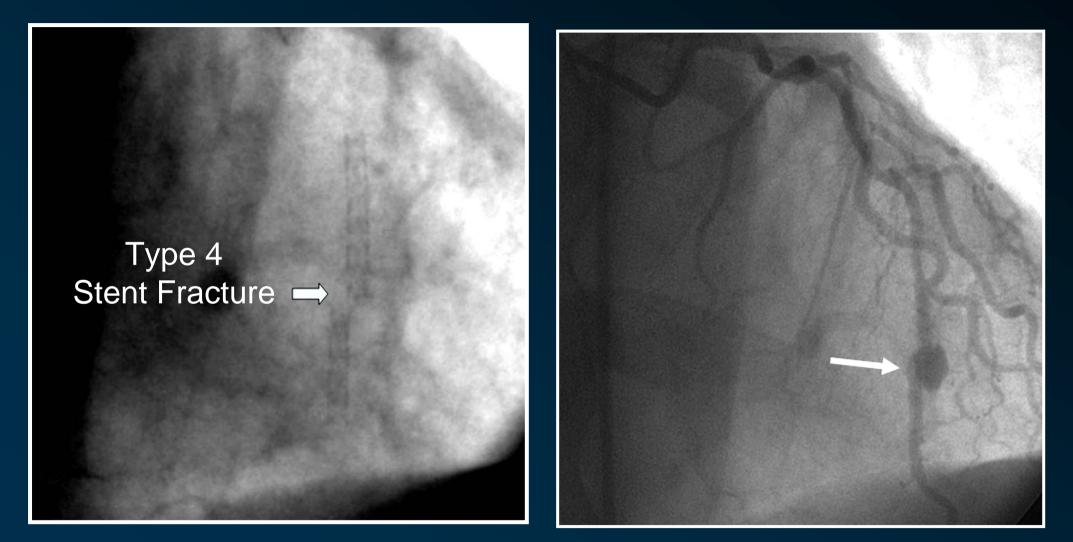
2.5 mm x 23 mm; 2.5 mm x 33 mm; 3.0 x 18 mm CYPHER stents


Final Angiographic Result

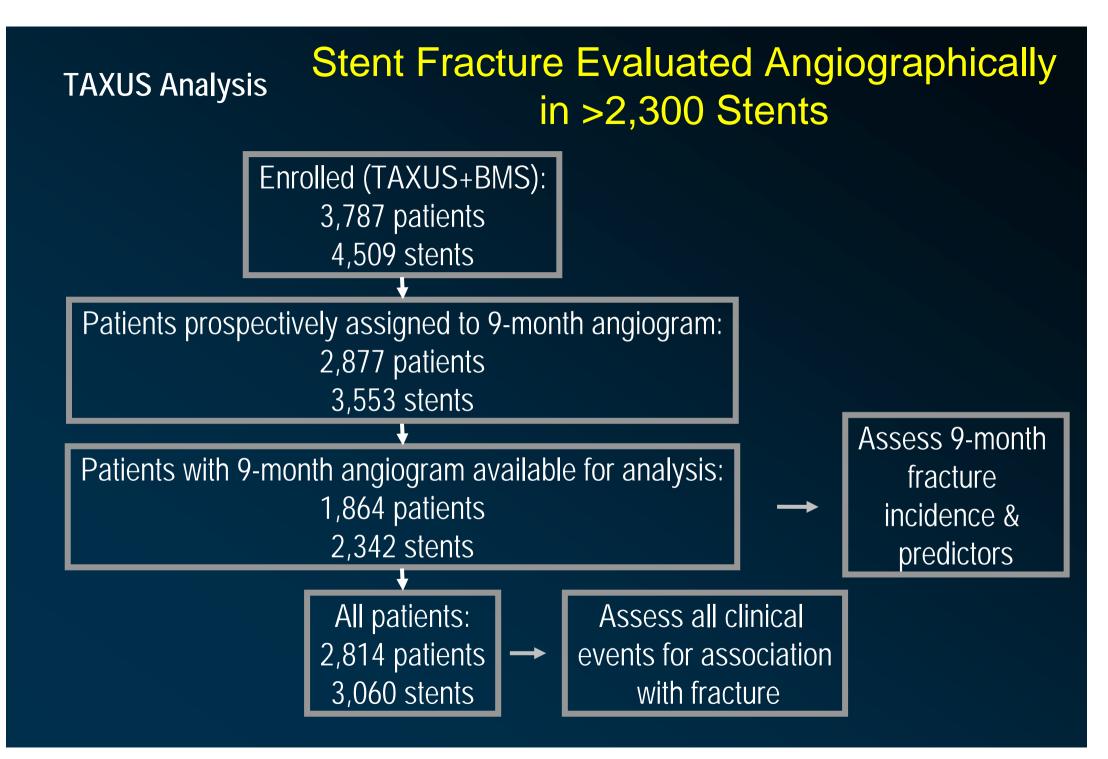
3 Month Angiographic Follow-Up


Stent Fracture with 3 mm of Stent Overlap

Case 2: Late Aneursym Formation

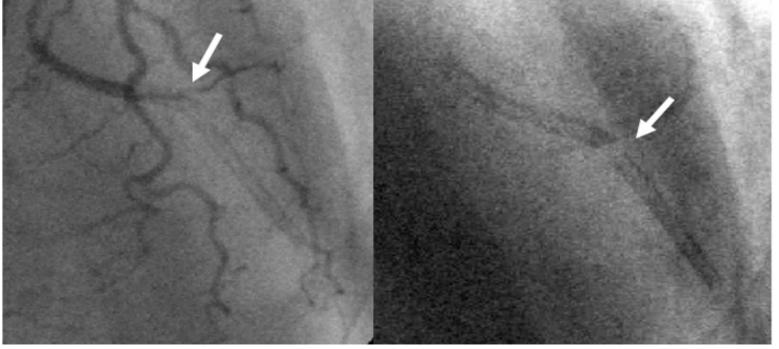

2.5 mm x 23 mm CYPHER

Case 2: Late Aneursym Formation


3 Month Follow-up

Case 3: Late Aneursym Formation

4 Month Follow-up


4 Month Follow-up

Type II Stent Fracture with strut separation and angulation at the site of total occlusion (arrows) at mandatory angiographic follow-up

Type IV Stent Fracture with stent separation and angulation at the site of total occlusion (arrows) at mandatory angiographic follow-up

TAXUS Analysis

9-Month Incidence of Fracture With Express and Liberté

Per-stent analysis, % (n/N)

Study	Overall	Control*	TAXUS	<i>P</i> value
TAXUS IV	0% (0)	0% (0)	0% (0)	NA
TAXUS V	1.1% (11)	0.4% (2/466)	1.8% (9)	0.07
TAXUS VI	0.4% (2)	0.4% (1)	0.4% (1)	1.00
Pooled IV/V/VI	0.7% (13)	0.3% (3)	1.1% (10)	0.09
TAXUS ATLAS	0.0% (0)†		0.0% (0)	NA

Among all patients (2,814 patients/3,060 stents; median 1,446 days of follow-up), 4 additional fractures observed beyond 9 months (3 TAXUS Express and 1 TAXUS Liberté)

Stent Fracture And 9 Month Restenosis

Outcome	Fracture	No fracture	<i>P</i> value
Total patients	11	1853	
In-stent MLD, mm	1.49±0.29	2.00 ± 0.02	0.03
In stent late lumen loss, mm	1.04±0.21	0.60±0.01	0.02
In stent % Diameter Stenosis	48.85±10.16	27.27 ± 0.55	<0.01
In stent binary restenosis, %	40.0% (4/10)	16.4% (292/1776)	0.07

TAXUS Analysis

TAXUS Analysis Stent Fracture and Lesion Complexity

Baseline Characteristics in the Angiographic FU Cohort

Characteristic	Fracture	No fracture	<i>P</i> value
Total patients	11	1853	
Previous MI, %	63.6% (7/11)	29.4% (545)	0.02
Lesion type C, %	80.0% (8/10)	37.9% (700)	0.01
Lesion length, mm	23.9±3.7	16.7±0.2	0.01
Proximal tortuosity, %	50.0% (5)	9.83% (181)	<0.01
Study stents implanted	2.27±0.43 (11)	1.32±0.01	0.05

TAXUS Analysis Stent Fracture and 9 M Outcome

Results in the Angiographic Cohort, All Clinical Follow-up

	Fracture at 9 mo	No fracture at 9 mo	P value
Total patients	11	1853	
TLR	27.3% (3)	11.8% (219)	0.13
MI (total)	18.2% (2)	4.8% (89)	0.10
Q-wave	9.1% (1)	0.8% (15)	0.09
Non-Q-wave	9.1% (1)	4.0% (74)	0.36
All death	0.0% (0)	4.7% (94)	1.00
Cardiac death	0.0% (0)	2.1% (38)	1.00
ARC Def+prob ST	18.2% (2)	0.8% (12/1)	<0.01

Coronary Stent Fractures: Implications

- Stent fracture is not a good thing
- It can be better predicted with appropriate pre-clinical models, particularly with peripheral stents
- Stent fractures tend to occur in patients with ultracomplex disease – calcium, tortuosity, vessel motion
- Rigid stent designs seem more predisposed to stent fracture than more open cell designs
- Movement toward thinner struts and more radiolucent stents will make the detection of stent fracture much more difficult without the use of enhancement