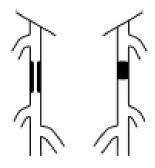
A Data-driven Therapeutic Algorithm For Choosing Among Currently Available Tools For SFA Intervention

William A. Gray MD
Director of Endovascular Services
Associate Professor of Clinical Medicine
Columbia University Medical Center
The Cardiovascular Research Foundation

Dissapointing results for non-nitinol stents

 Results of the first generation self-expanding stents (WallStent & Strecker stent) in the SFA

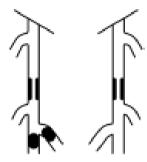
	FU	Lesion length	Primary Patency
Van Der Zaag et al	12M	5-15 cm	43%
Conroy et al J Vasc Int Radiol 2000	24M	mean 13.5 cm	36%
Gordon et al Arch Surg 2001	12M	mean 14.5 cm	55%
Cheng et al Ann Vasc Surg 2003	24M	mean 16 cm	35%



Type A lesions

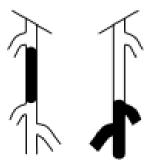
- · Single stenosis ≤10 cm in length
- · Single occlusion ≤5 cm in length

TASC classifications of SFA lesions



Type B lesions:

- · Multiple lesions (stenoses or occlusions), each ≤5 cm
- Single stenosis or occlusion ≤15 cm not involving the infrageniculate popliteal artery
- Single or multiple lesions in the absence of continuous tibial vessels to improve inflow for a distal bypass
- . Heavily calcified occlusion ≤5 cm in length
- Single popliteal stenosis


Type Clesions

- Multiple stenoses or occlusions totaling > 15 cm with or without heavy calcification
- Recurrent stenoses or occlusions that need treatment after two endovascular interventions

Type Dilesions

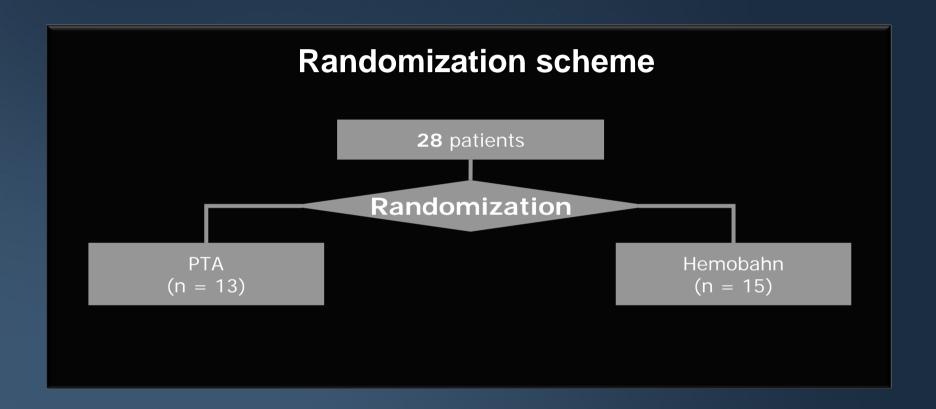
- Chronic total occlusions of CFA or SFA (>20 cm, involving the popliteal artery)
- Chronic total occlusion of popliteal artery and proximal trifurcation vessels

Levels of evidence Source: US Preventive Services Task Force

Level I	well-designed, prospective, randomized, controlled trials
Level IIa	well-designed, prospective, non-randomized, controlled trials
Level IIb	well-designed, prospective, non-randomized, non-controlled cohort or case-control analytic studies
Level IIc	retrospective, non-randomized, non-controlled multiple time series
Level III	expert opinions, based on clinical experience, descriptive studies or reports of expert committees

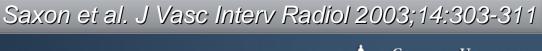
Summary of non-randomized trial results Levels IIa, IIb, IIc

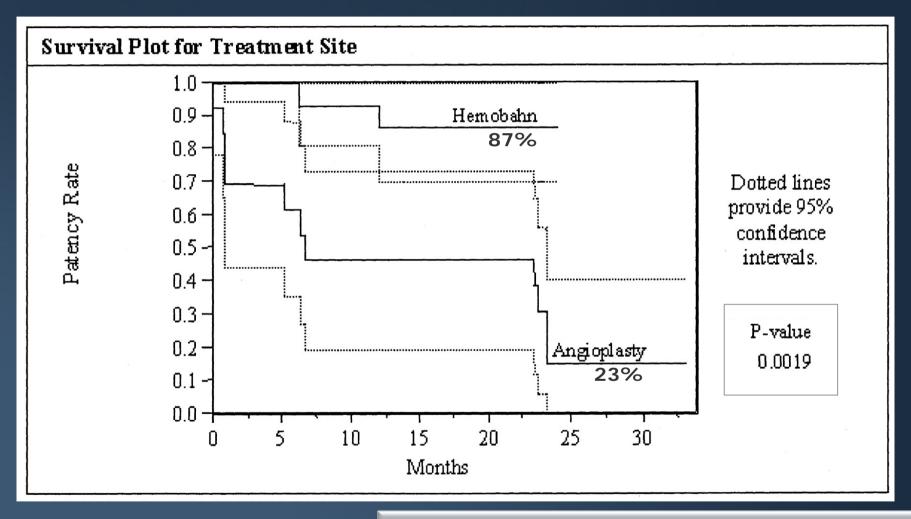
Reference	stent name	lesion length (cm)	prim patency @12-months
Jahnke 2002	IntraCoil	3.6	86.2%
Wiesinger 2005	Covered SI	MART 5	89.8%
Henry 1996	VascuCoil	< 4	89 %
Sabeti 2004	any	5	75 %
Lugmayr 2002	Symphony	< 6	87 %
Lenti 2007	aSpire	unk	64 %
Schillinger 2001	any	10.1	63 %
Fischer 2006	Hemobahn	/Viabahn 10.7	80 %
Jahnke 2003	Hemobahn	10.9	78.4%
Schlager 2005	any	12.5	80 %
Lammer 2000	Hemobahn	13.1	78.7%
Cheng 2001	any	13.8	62.6%
Daenens 2005	Hemobahn	15	66 %
Cheng 2003	any	16	56 %
Bray 2005	Hemobahn	17.8	60.8%
Biamino 2002	SMART	20.8	55 %



Study description:

- Single-center experience as part of a US prospective, randomized, controlled, multi-center study
- Balloon angioplasty vs. Hemobahn (Gore) ePTFE-covered endoprosthesis placement
- Inclusion period: Jun 1998 Dec 1999




Lesion information

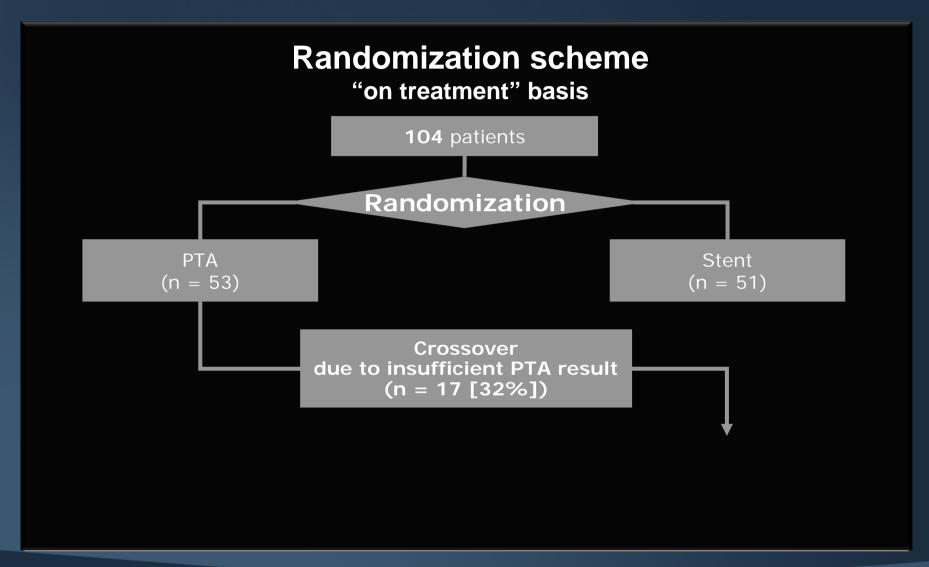
	PTA	Hemobahn
Average lesion length	6.32cm (4.44-8.20)	7.41cm (5.63-9.19)
TASC A	1	0
TASC B	8	5
TASC C	3	6
TASC D	1	4

CARDIOVASCULAR RESEARCH

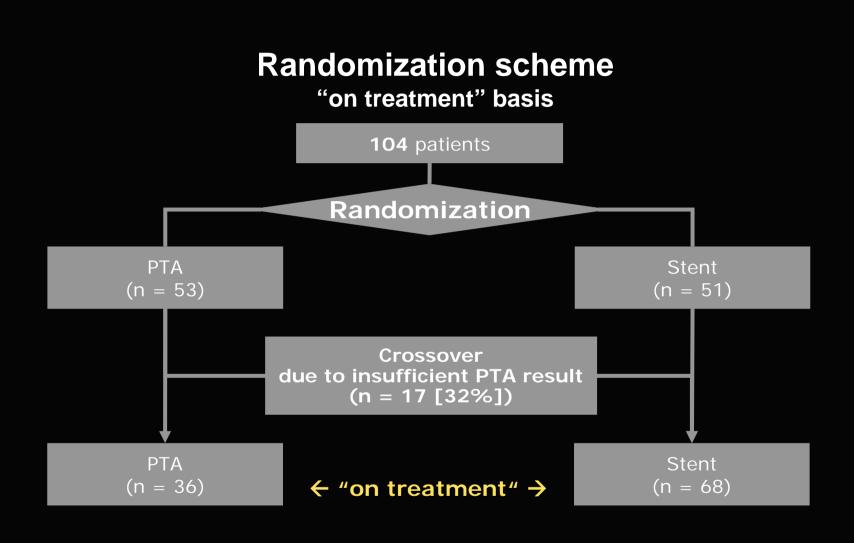
Saxon et al. J Vasc Interv Radiol 2003;14:303-311

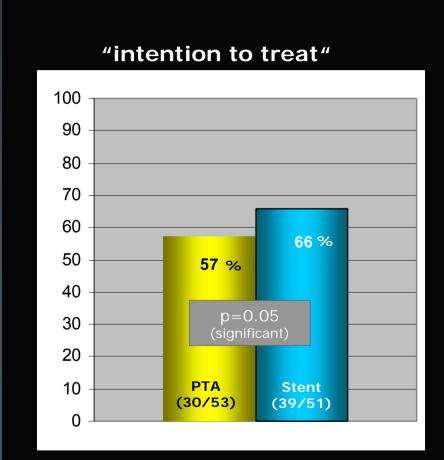
Conclusions for medium length lesions

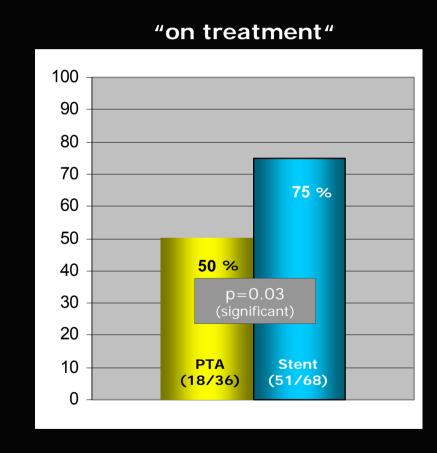
- Patency rates after Hemobahn implantation were significantly better than those after balloon angioplasty
- Clinical success rate was significantly higher in the Hemobahn group



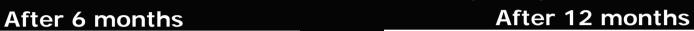
- Prospective, randomized, controlled, single-center
- Balloon angioplasty vs. nitinol stent implantation
- Inclusion period: Jun 2003 Aug 2004

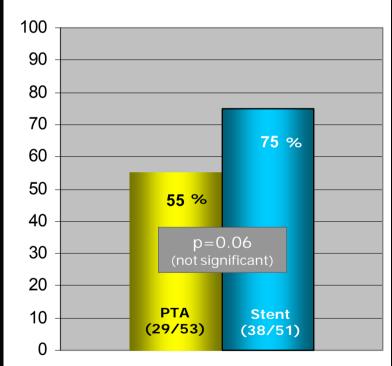


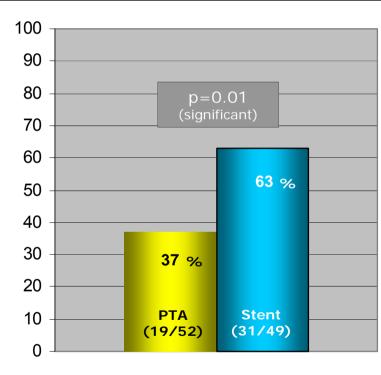

Lesion information


	PTA	Nitinol stent
Average lesion length	9.2cm (±6.4)	10.1cm (±7.5)
Occlusions	19% (±10)	17% (±10)

Schillinger et al. NEJM 2006;354:1879-1888

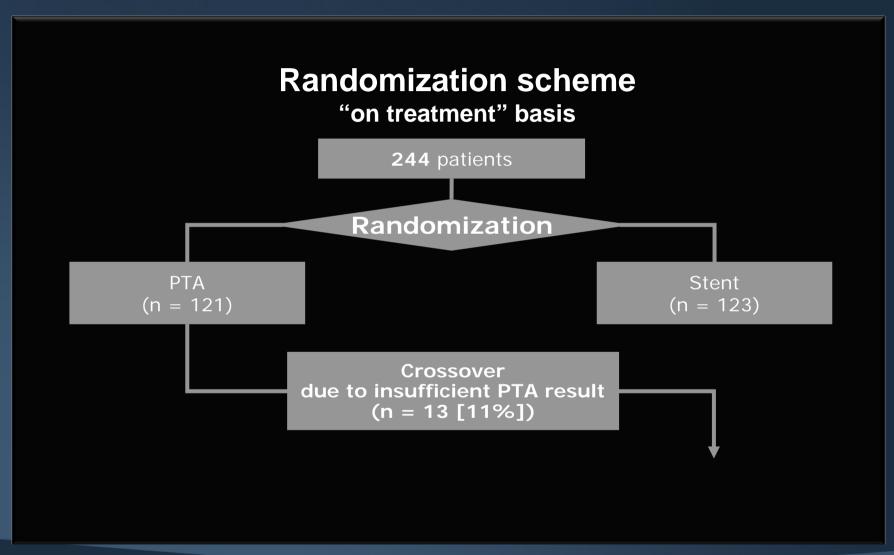


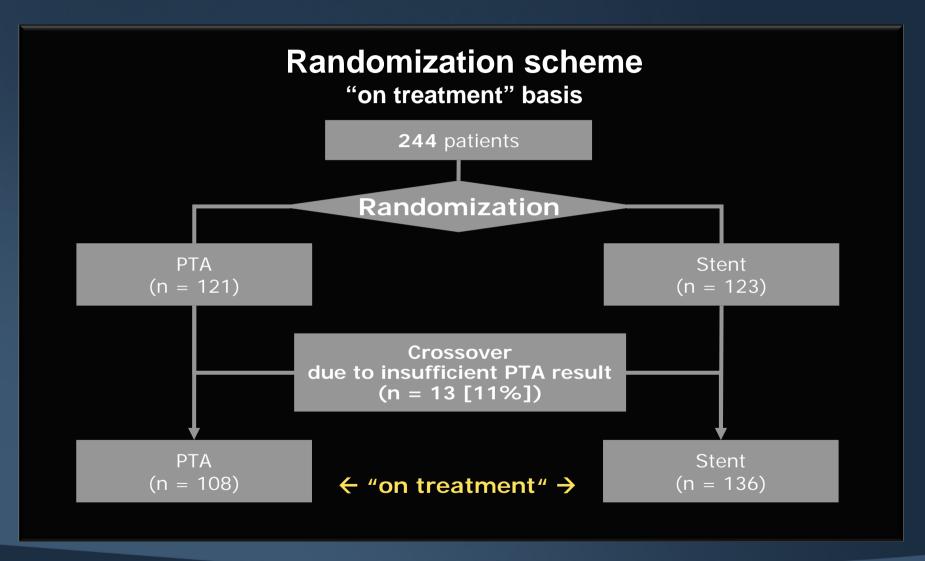


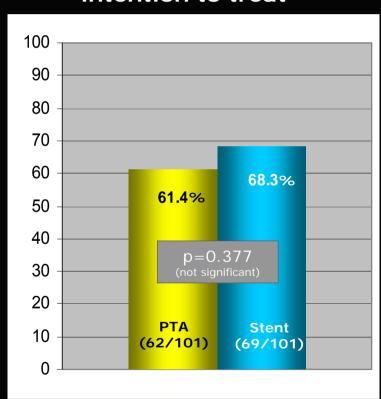


Based on "intention to treat" principle

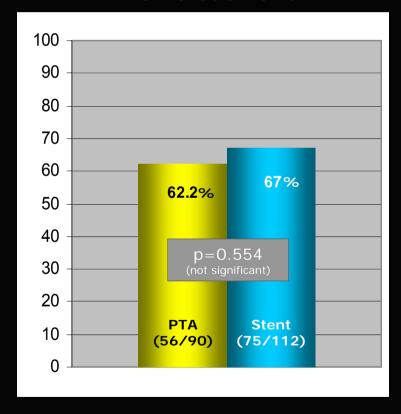
Conclusion for medium length lesions


- Angiography showed significantly better restenosis rates for the stent group at 6 months
- Duplex sonography confirmed significantly better restenosis rates at 12 months
- Clinical worsening was rare in either group
- Reintervention rates were similar in both groups


- Prospective, randomized, controlled
- Balloon angioplasty vs. Luminexx nitinol stent
- Femoral Artery Stenting Trial
- SFA lesions between 1 and 10cm in length
- Only 1 stent per treated lesion



Lesion information: short to medium length lesions


	PTA	Luminexx stent	
Average lesion length	44.5mm	45.2mm	not signifcant
Occlusions	25%	37%	not signifcant

"intention to treat"

"on treatment"

Conclusion

 The Femoral Artery Stenting Trial failed to demonstrate the superiority of the Luminexx nitinol stent over stand-alone PTA in the treatment of patients with superficial femoral artery (SFA) lesions 1-10cm in length

SIROCCO I & II: SES vs. BMS

- Double-blind, randomized, prospective (sirolimus vs. bare stent)
- SIROlimus Coated Cordis SMART Nitinol Self-expanding stent for the treatment of Obstuctive SFA disease
- Phase 1: 36 patients
 - max 3 stents \rightarrow >70% stenosis >7cm to <20cm
 - → occlusion >4cm to <20cm
- Phase 2: 57 patients
 - max 2 stents → lesion length >7cm to <14.5cm</p>
 - → occlusion >4cm to <14.5cm

SIROCCO I & II

Baseline Lesion Characteristics

	Sirolimus	Control	P- value
	(n=29)	(n=28)	
Thrombus (%)	3.6	0	
Moderate/Severe Calcification (%)	44.8	32.3	0.42
Total Occlusion (%)	75.9	57.1	0.17
Lesion Length (mm)	86.5 ±36.6	76.3 ± 45.7	0.39
Reference Vessel Diameter (mm)	4.92 ± 0.77	4.61 ± 0.72	0.12
Pre – Percent Diameter Stenosis (%)	95.8 ±7.82	89.1 ±14.8	0.09

SIROCCO I & II

Duplex Ultrasound @ 24-month

		Slower Eluting	Fast Eluting (n=11)	Control
		(n=5)	()	(n=17)
Binary Restenosis Rate	9/ (p)	40.0 (2)	44.4 (4)	47.1 (8)
Billary Restations Rate	%(n)	13.3 (2)	(.)	11.11 (3)
Total Occlusion	%(n)	0	0	5.8 (1)
Total Restenosis/Occlusions	%(n)	40.0 (2)	44.4 (4)	52.9 (9)
Target Lesion Revascularization	%(n)	0	11.1 (1)	5.8 (1)

SIROCCO I & II

Angiography @ 24-month

	Pooled SR SIROCCO I-II (n=16)	Control SIROCCO I-II (n=14)	p value
Minimum Lumen Diameter	2.15mm	2.15mm	0.941
Stent Mean Diameter	3.42mm	3.35mm	0.995
In-stent restenosis			
- unreadable	3 (18.8%)	2 (14.3%)	0.370
- patent	9 (56.3%)	8 (57.1%)	3.3. 3
- ≥50% and <70%	4 (25.0%)	2 (14.3%)	
- ≥70% and <100%	-	1 (7.1%)	
- occlusion	-	1 (7.1%)	

SIROCCO I & II: conclusions

- Fractures associated with
 - Multiple stents
 - Longer stented lengths
 - Frequently adjacent to the overlaps (not in the overlap areas themselves)
- No relationship between fracture and restenosis
- Sirolimus-eluting stents are safe for SFA treatment
- Excellent results with bare SMART stent
 - In-stent binary restenosis rate: 28.5% @ 24 months (angiographically)

Zilver PTX: PES vs. BMS

- Randomized Study (480 pts)
 - Phase 1: 60 patients
 - lesions ≤ 7 cm, up to 1 stent per limb
 - enrollment complete
 - Phase 2: 420 patients
 - Lesions ≤ 14 cm, up to 2 stents per limb
 - Currently enrolling
- Registry Study (760 pts)
 - Up to 4 Zilver[®] PTX[™] stents per patient
 - Currently enrolling:
 - more than 700 patients enrolled/approximately 2500 stents implanted

PTX: Baseline angiographic data

	Randomiz (Pha	Registry Study	
	PTA	ZPTX	ZPTX
	(N = 33 lesions)	(N = 29 lesions)	(N = 91 losions)
Lesion Length (cm)	3.6 ± 2.0	4.1± 3.1	10 ± 8.1
Lesion Length (Citi)	(range 1 to 7)	(range 1 to 10)	(range 1 to 33)
Proximal RVD (mm)	5.2 ± 1.0	5.0 + 1.1	5.3 ± 0.8
Distal RVD (mm)	5.3 ± 1.0	4.9 ± 1.1	5.1 ± 0.8
MLD in lesion (mm)	1.3 ± 0.8	1.1 ± 0.7	0.6 ± 0.7
% Diameter Stenosis	76 ± 15	78 ± 14	89 ± 12

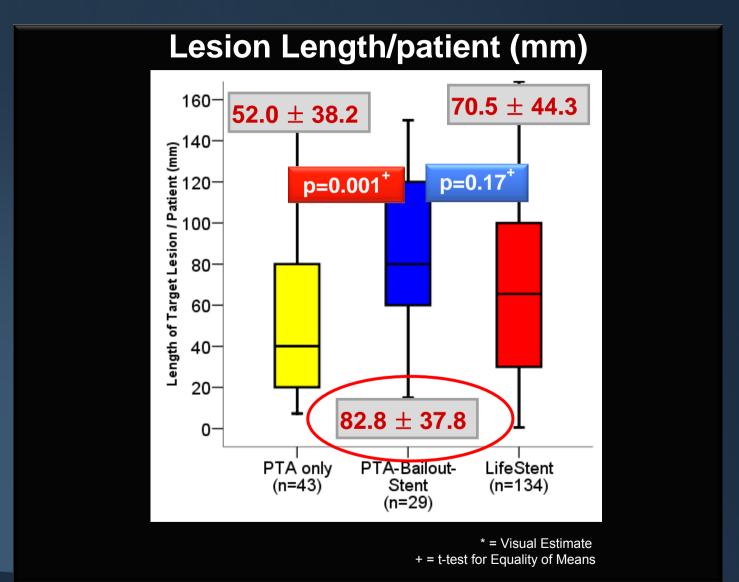
Zilver PTX: 6-month effectiveness

Study	Freedom from TLR	
Phase 1 of the randomized study		
PTA	52% [17/33]	
No PTA failure	100% [17/17]	
PTA acute failure→BMS Zilver	75% [6/8]	
PTA acute failure→PTX Zilver	100% [8/8]	
Zilver PTX	90% [26/29]	
Registry Zilver PTX	90% [82/91]	

RESILIENT: LifeStent vs. PTA

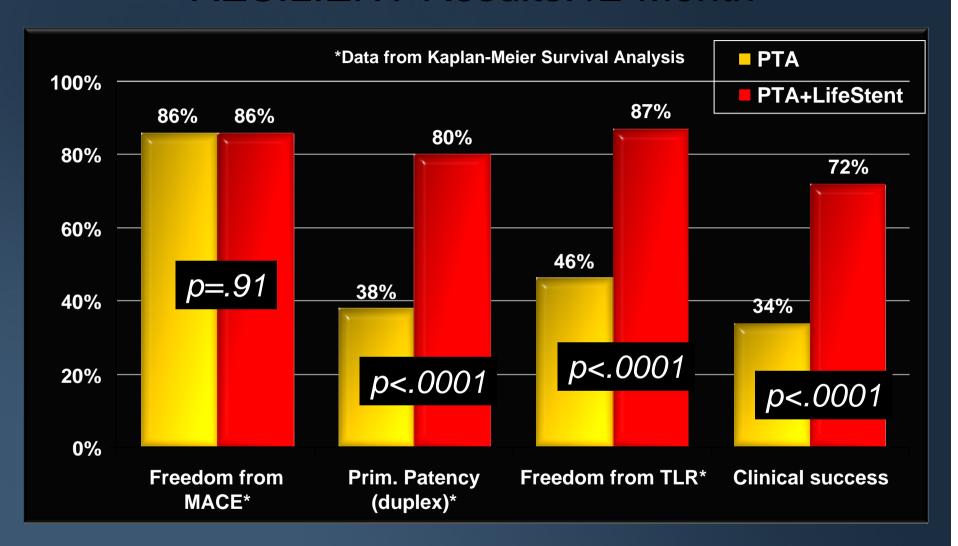
n=20 PTA + LifeStent Phase I: Feasibility @ 6 sites

n=20 roll-in PTA + LifeStent Phase II: Pivotal @ 24 sites


n=206 randomly allocated 1:2

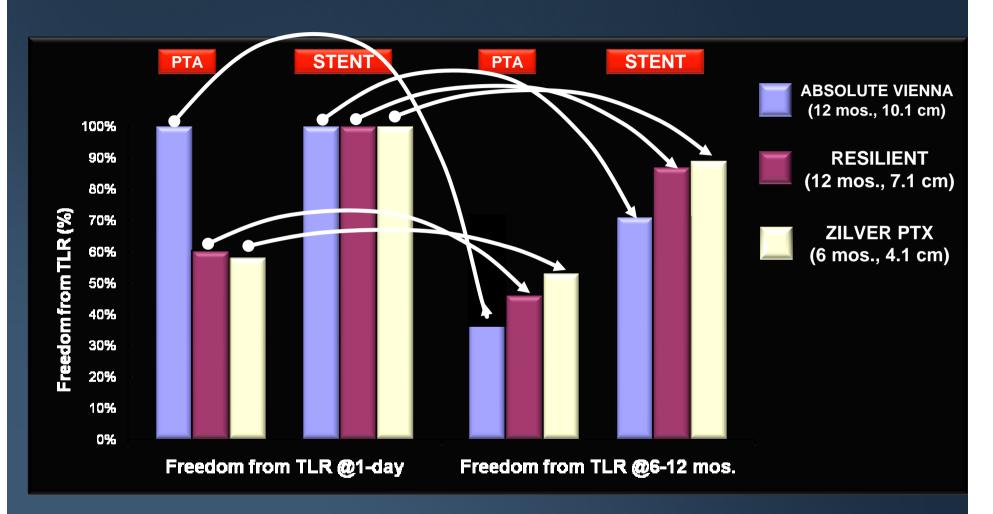
PTA Only
Control Arm
n=69

PTA + LifeStent
Test Arm
n=137



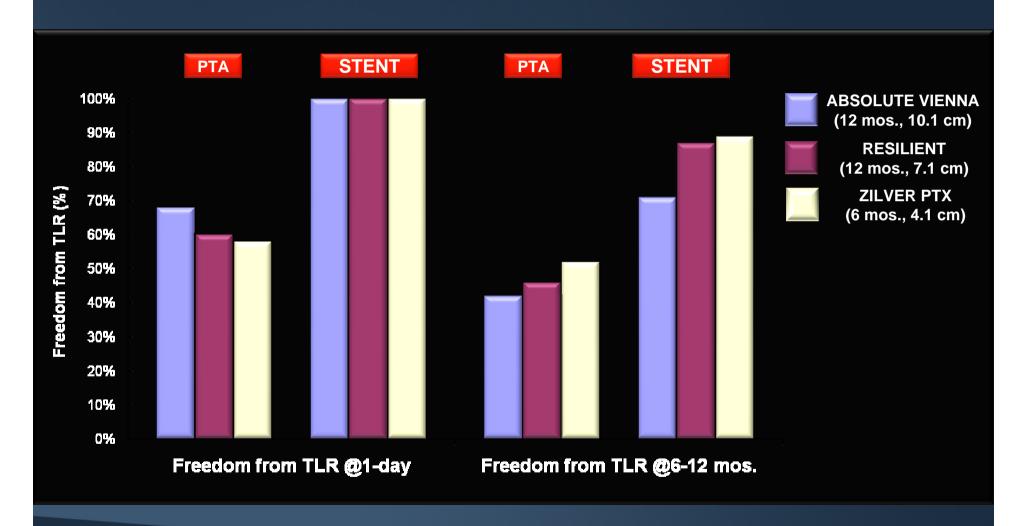
RESILIENT: Bail-out lesion characteristics

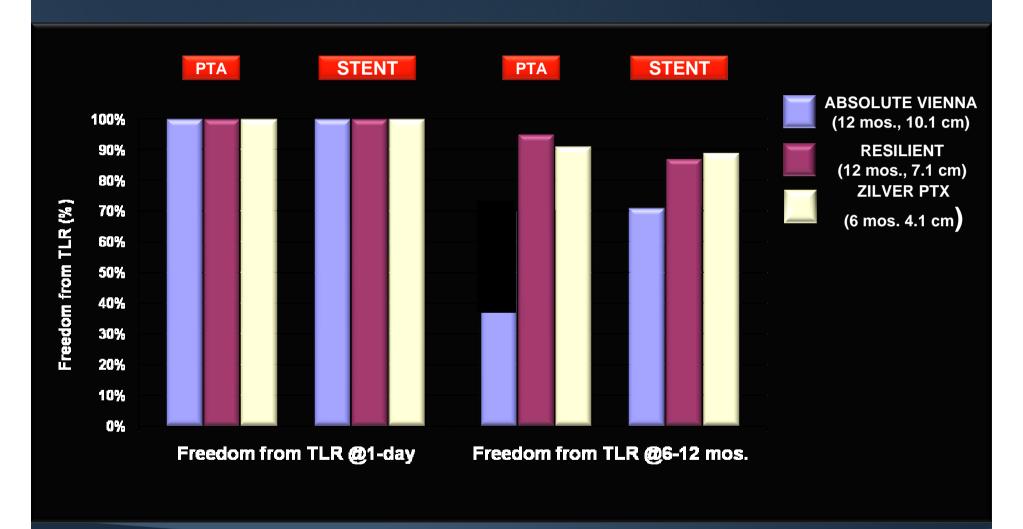
RESILIENT Results: 12-Month



RESILIENT: behind the numbers

- Bail-out stenting (crossover) in the PTA group occurred 40.2% (29/72) for:
 - Major flow-limiting dissection (38%)
 - Residual stenosis >30% (62%)
- Confirmed as acceptable by Core Lab and CEC
- Procedural crossover to stenting in the PTA group was defined as a TLR and counted as a primary endpoint and patency failure


Clinical trial comparison using the reported rates of TLR


Clinical trial comparison using the RESILIENT/ZILVER PTX definitions of TLR

Clinical trial comparison using the ABSOLUTE/VIENNA definitions of TLR

SFA Challenges: Data collection

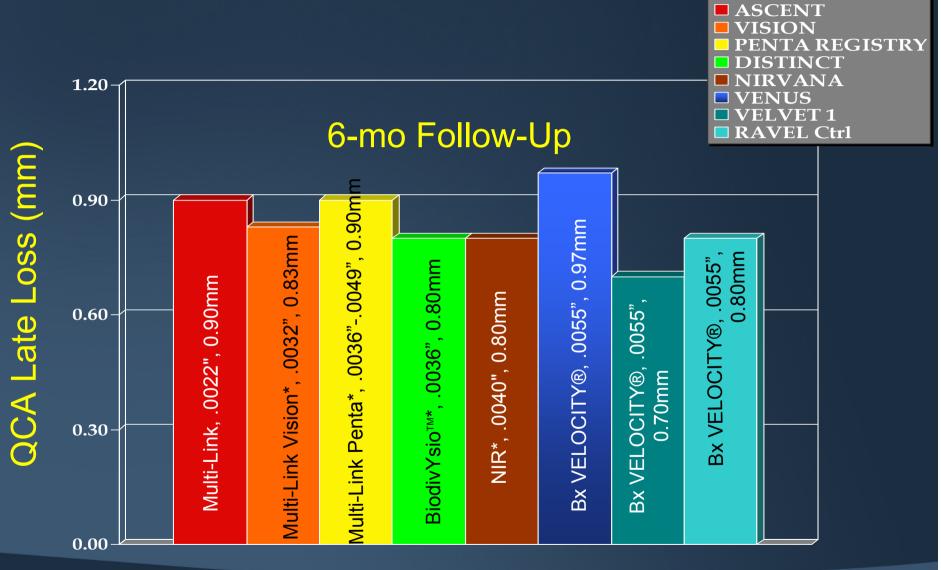
- Data collection
 - Endpoint definitions of success
 - Anatomic
 - Binary restenosis (>50%)
 - Discrete vs. diffuse vs. volume definitions
 - Clinical
 - Walking distance
 - ABI
 - Quantifying (and understanding) restenosis
 - Angiographic
 - Duplex
 - Intravascular ultrasound
 - Time course defining durability of intervention
 - Consistent and standardized reporting structure

Patient factors with unclear influence on interventional outcomes

- Inflow/Run-off status
- Length of disease
- Vessel diameter
- Occlusion vs. stenosis
- Diabetic status
- Tobacco status
- Atheroma volume
- Calcification
- Gender

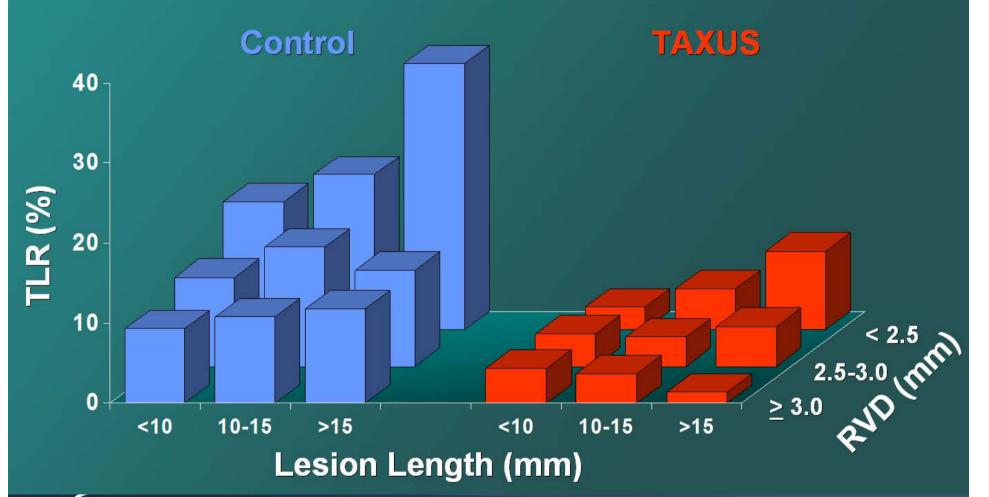
Procedural factors with unclear influence on interventional outcomes

- Stents
 - Number
 - Degree of overlap
 - Compression or stretch during implant
 - Significant oversizing or undersizing
- Adjunctive debulking


SFA: Design challenges

- This arterial territory response to intervention is poorly understood
 - There are no large-scale data sets from which to establish design goals
 - Such data was critical to the understanding of coronary stent behavior and the opportunity to improve the technology in a focused direction

Late Loss in Bare Metal Stents



TAXUS IV – Impact of Vessel Size & Lesion Length

TLR (12-month)

Result of lack of outcome data

- Current efforts at designing successful devices which will have improved outcomes are at best estimates of the causal relationships
- In the typically small clinical trials testing in SFA therapies, these devices are subject to variation in subject/vessel characteristics

Conclusions

- Stents are better than PTA (I think) for limited lesion length
- Long stents are worse than short stents
- Not all stent fractures are created equal
 - FESTO results not borne out in later trials
- Alternative therapies (photodynamic, adventitial injection, adjunctive atherectomy, etc.,) may be useful but as yet untested
- Drug-eluting balloon looks interesting in spite of lack of clear mechanism
- VIBRANT trial data will be interesting

