Assessment of vulnerable plaque by OCT

Comparison among Intravascular Imaging Modalities

Takashi Akasaka, M.D. Department of Cardiovascular Medicine Wakayama Medical University Wakayama, Japan

Disclosure Statement of Financial Interest

I (Takashi Akasaka) do not have a financial interest/arrangement or affiliation with one or more organizations that could be perceived as a real or apparent conflict of interest in the context of the subject of this presentation.

Pathohistology of vulnerable plaque (HE stain)

Thin fibrous cap Large lipid core Advanced atherosclerosis

Pathohistological characteristics of vulnerable plaque

- Positive remodeling
- Eccentric plaques
- Lipid-rich plaques (necrotic core)
- Thin fibrous cap (< 65 μ m)
- Rupture (60%) or ulceration ($30 \sim 40\%$) of fibrous caps
- Thrombus formation
- Macrophage accumulation

Study Population

Inclusion criteria

Acute Myocardial Infarction

continuous chest pain lasted > 30 minutes, arrival within 6 hours from the onset of chest pain ST elevation $\geq 0.1 \text{ mV}$ in 2 or more contiguous leads culprit lesion with diameter stenosis $\geq 75\%$ TIMI flow ≤ 2 identified by CAG

Exclusion criteria

left bundle-branch block pacemaker rhythm a culprit lesion in the left main coronary artery history of prior MI cardiogenic shock unsuccessful reperfusion < TIMI III flow by thrombectomy

Study Design

Oral aspirin (162 mg) and intravenous heparin (100 U/kg) were administered before PCI.

Cardiac catheterization was performed by the femoral approach, using a 7F sheath and catheters.

Wakayama Medical University

Thrombectomy (Export catheter @ Medtronic Japan)

TIMI grade III

- IVUS (Atlantis SR Pro@ 2.5F, 40-MHz; Boston Scientific, Natick, MA, USA)
- CAS (Angioscope MC-300E and the optic fiber AS-003, Nihon Kohden)
- OCT (ImageWire®; LightLab Imaging, Westford, MA, USA)

OCT system (LightLab Co.)

Optical Coherence Tomography (OCT)

OCT vs histology

Yabushita et al. Circulation, 2002

Tissue characterization by OCT and IVUS

Kume T, Akasaka T, et al (Am J Cardiol 97 : 1172 - 1175, 2006)

Pathohistological Diagnosis	Sensitivity	Specificity	Predicti Positive	ve Value Negative
OCT image				
Fibrous (n=43)	79	99	97	93
Fibrocalcific (n=82)	96	88	89	96
Lipid (n=41)	<mark>85</mark> *	94	83	95
IVUS image				
Fibrous (n=43)	88	86	69	95
Fibrocalcific (n=82)	98	96	96	98
Lipid (n=41)	59	97	86	87

Data are demonstrated as percentages. p<0.05 vs IVUS

Pathohistological characteristics of vulnerable plaque Assessment by OCT

- Positive remodeling
- Eccentric plaques
- Lipid-rich plaques (necrotic core)

- Thin fibrous cap
- Rupture or ulceration of fibrous caps
- Thrombus formation

• Macrophage accumulation

Pathohistological characteristics of vulnerable plaque Assessment by OCT

- Positive remodeling \triangle
- Eccentric plaques
- Lipid-rich plaques (necrotic core) O
- Thin fibrous cap
- Rupture or ulceration of fibrous caps
- Thrombus formation
- Macrophage accumulation

Inferior AMI (71y.o. Male)

Inferior-AMI (71y.o., M) Plaque Rupture

- Ruptured Fibrous Cap
- Fibrous Cap Thickness
 = 40µm
- TL : True Lumen UL : Ulceration

Ruptured Fibrous Caps

Anteroseptal AMI (80y.o., M)

Fibrous cap thickness = 60 µm Wakayama Medical University

Thickness of fibrous caps Histology vs OCT

Kume T, Akasaka T, et al (Am Heart J. 152:755, 2006)

Anteroseptal AMI (80 y.o. Male)

Anteroseptal AMI (80y.o., M)

Inf-AMI (71y.o., M) Thrombus

Red Thrombus

Thrombectomy

Wakayama Medical University

500 (µm)

Intensity Half Distance = 135 µm

Thrombus

Differentiation between red and white thrombus

Peak intensity

Kume T, Akasaka T, et al (Am J Cardiol . 2006, 97:1713-1717)

Wakayama Medical University

Intensity half distance

Differentiation between red and white thrombus

White thrombus

Red thrombus

Comparison of plaque Images in AMI (OCT vs. CAS vs. IVUS) n=30

(Kubo T, Akasaka T, et al. J Am Coll Cardiol 50:933-999,2007)

	OCT	*CAS	**IVUS	* p	** p
Plaque Rupture (%)	73	47	40	0.035	0.009
Ulceration (erosion) (%)	23	3	0	0.022	0.005
Thrombus (%)	100	100	33	1.000	<0.001
Red thrombus (%)	100	90	-	0.076	-
White thrombus (%)	100	<mark>93</mark>	-	0.150	-
TCFA(≦65μm) (%)	83	-	-	-	-
Fibrous cap thickness (μ m)	49 ± 21	-	-	-	-
LRP (Lipid Arch>180°) (%)	83	-	67	-	NS

TCFA; Thin Cap Fibro-Atheroma, LRP; Lipid Rich Plaque

Pathohistological characteristics of vulnerable plaque Assessment by OCT

- Positive remodeling \triangle
- Eccentric plaques
- Lipid-rich plaques (necrotic core) O
- Thin fibrous cap
- Rupture or ulceration of fibrous caps
- Thrombus formation **(**)
- Macrophage accumulation

OCT findings

Low $M\phi$

High Mφ

OCT

CD68 (macrophage)

Macrophages

Macrophages

Pathohistological characteristics of vulnerable plaque Assessment by OCT

- Positive remodeling \triangle
- Eccentric plaques
- Lipid-rich plaques (necrotic core)
- Thin fibrous cap
- Rupture or ulceration of fibrous caps
- Thrombus formation ()
- Macrophage accumulation

Summary Assessment of vulnerable plaque by OCT Comparison with pathohistology

- Positive remodeling
- Eccentric plaques
- Lipid-rich plaques (necrotic core)
- Thin fibrous cap
- Rupture or ulceration of fibrous caps
- Thrombus formation ()
- Macrophage accumulation

Corresponding Images of OCT and Angioscopy

(Kubo T, et al. J Am Coll Cardiol Intv 1:74-80,2008) Wakayama Medical University

Angioscopy vs OCT

Plaque color vs lipid size

Plaque color vs fibrous cap thickness

(Kubo T, et al. J Am Coll Cardiol Intv 1:74-80,2008)

IVUS-derived TCFA

(Rodriguez-Granillo GA, et al. J Am Coll Cardiol 46:2038-2042, 2005)

Percent atheroma volume = (EEM area – Lumen area)/EEM area $x100 \ge 40\%$

Nectrotic core≧10%

Without evident overlying fibrous tissue

VH-IVUS vs OCT

Figure 2

Without evident overlying fibrous tissue

Without evident overlying fibrous tissue

With evident overlying fibrous tissue Wakayama Medical University

Distribution of fibrous cap thickness in cases with VH-TCFA

Concordance & discordance between VH-IVUS and OCTTable 4in the assessment of TCFA

Wakayama Medical University

Summary

- OCT can identify lipid-rich plaques more sensitively compared with IVUS.
- OCT can demonstrate rupture or ulceration of fibrous cap with higher detection rate than that of IVUS or CAS.
- OCT could detect intracoronary thrombus almost exclusively which was confirmed by CAS.
- OCT may estimate macrophage accumulation within fibrous caps.

Frequency domain OCT (M4)

Conclusion

OCT should be the most ideal tool in the assessment of vulnerable plaques among various intravascular imaging modalities.

Unstable AP

Three vessel OCT examinations in a patient with posterior AMI

The culprit lesion was LCX (#11), and TCFA (1), plaque rupture ((2,3)) and intracoronary thrombus ((2,3), (4)) were observed by OCT. Although the plaques in LAD ((7), (8)) were not observed, plaque rupture ((5,6)) were detected by OCT in the non-culprit lesions of LCX (#13).

Three vessel OCT examinations in a patient with posterior AMI

Also OCT revealed TCFA (9-(3)) and plaque rupture((1), (2), (3)) in the non-culprit lesions of RCA.

OCT analysis of the non-culprit plaques

	Non-culprit plaque			
	AMI (n=43)	SAP (n=25)	p-value	
Plaque rupture (n, %) Plaque ulceration (n, %) Intracoronary thrombus (n, %) Fibrous cap thickness (μ m) Lipid arc > 90° (n, %) TCFA (n, %)	10 (24) 1 (2) 11(26) 109±55.5 18 (42) 15(35)	1 (4) 0 (0) 0 (0) 194±81.9 12 (48) 2 (8)	0.035 0.632 0.006 <0.001 0.623 0.012	

Pathohistological characteristics of vulnerable plaque

- Positive remodeling
- Eccentric plaques
- Lipid-rich plaques (necrotic core)
- Thin fibrous cap
- Rupture or ulceration of fibrous caps
- Thrombus formation
- Macrophage accumulation

Thrombus

Optical Coherence Tomography (OCT)

- Size of imaging core (0.4 mm)
- Microscopic resolution (10-20 μ m)
- Real time Imaging (15 frames/s)

Fibrous plaque

Fibrocalcific plaque

Fibro-lipidic plaque

Comparison between IVUS and OCT

IVUS

Resolution	<i>(axial)</i> 100 - 150 μm <i>(lateral)</i> 150 - 300 μm	15 - 20 μm 25 - 40 μm
Size of imaging core	0.8 mm	0.4 mm
Dynamic range	40 - 60 dB	90 - 110 dB
Frame rate	30 frames/s	15 frames/s
	Wakay	ama Medical Univers.