Unmet Need in Hypertension and Heart Failure

-ASPIRE HIGHER: Are there still existing unmet needs? What we expect from new antihypertensive treatment

Sang Hong Baek M.D., Ph.D.

Professor of Medicine
Division of Cardiovascular Medicine
KangNam St. Mary’s Hospital
The Catholic University of Korea
Seoul, Korea

Apr 23, 2008 13:10~ 13:25
The Prevalence of Cardiovascular Disease is Increasing in Many Countries

- CVD is increasing in prevalence in many regions of the world, particularly in developing countries and eastern Europe\(^1\)

- In countries where mortality rates from coronary heart disease are falling, morbidity rates – particularly in older age groups – appear to be rising\(^2\)

Change in prevalence 1994–2003, UK

- CHD: +23% (Men), +10% (Women)
- Stroke: +50% (Men), +43% (Women)
- CHD or stroke: +28% (Men), +21% (Women)

Hypertension Usually Has No Symptoms But is A Significant Healthcare Problem

- Hypertension is known as the ‘**silent killer**’ because it usually has no symptoms

- Approximately half of those who have hypertension are **unaware** they have a problem

WHO Global Burden of Disease Study

- **Malnutrition**: 11.7%
- **Tobacco use**: 6.0%
- **Hypertension**: 5.8%
- **Poor water supply**: 5.3%
- **Physical inactivity**: 3.9%

Asia is Changing

• **Globalization**
 – Exposure to different attitudes and values
 – Changes in lifestyle and interests
 – New role models

• **Demographic changes**
 – Declining fertility; aging population
 – Increased education and work opportunities for both men and women
 – Increased migration and urbanization

• **Rapid changes in technology**
Prevalence of Hypertension

Lower prevalence but higher growth rate compared to other developed countries

Prevalence of hypertension (%), 35-65 years
(≥140/90mmHg)

<table>
<thead>
<tr>
<th>Country</th>
<th>Prevalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>China</td>
<td>19%</td>
</tr>
<tr>
<td>Taiwan</td>
<td>22%</td>
</tr>
<tr>
<td>Thailand</td>
<td>22.7%</td>
</tr>
<tr>
<td>Singapore</td>
<td>24.9%</td>
</tr>
<tr>
<td>Korea</td>
<td>26%</td>
</tr>
<tr>
<td>US</td>
<td>28%</td>
</tr>
<tr>
<td>Italy</td>
<td>38%</td>
</tr>
<tr>
<td>England</td>
<td>42%</td>
</tr>
<tr>
<td>Spain</td>
<td>47%</td>
</tr>
<tr>
<td>Germany</td>
<td>55%</td>
</tr>
</tbody>
</table>

MOH clinical practice guideline 2
Global Burden of Hypertension is Predicted to Increase in Spite of Treatment Advances

- Pooled data from 30 population-based studies from around the world (Kearney et al. 2005)

Population-attributable Fractions for Cardiovascular Disease Deaths due to Hypertension

men

women

J Hypertension 2007
Long-term Treatment for Hypertension Significantly Reduces CV Events….

- Relative risk reduction (%)
 - 50
 - 40
 - 30
 - 20
 - 10
 - 0

- Risk of CV event with ACEI or CCB relative to placebo
 - CHD: 20–21%
 - Stroke: 30–39%
 - CV event: 21–28%

... But Even if Hypertension is Controlled Patients are at Increased Risk of Death and Coronary Heart Disease (CHD)

Overall survival

Non-hypertensive men
Treated hypertensive men

Follow-up BP: NBP 145/93
T-HBP 145/89

p=0.0001

CHD deaths

Non-hypertensive men
Treated hypertensive men

p=0.0001

Andersson OK et al., 1998
Increased Risk of Death in Patients with Hypertension Compared with Non-hypertensive Patients is Multifold

- Risk partly irreversible
- Treatment starts too late

Greater protection is afforded by:

- Drugs with specific organ protective properties
- More aggressive BP reductions <140/90 mmHg
- Correction of multi-factorial risk profile
Hypertension: Problem Setting

- Despite the availability of a range of antihypertensives, the majority of hypertensive patients are **not at goal**

- **Compliance and long-term persistence** with treatment is poor
 - Potentially due to the adverse effects associated with some agents

- Antihypertensive agents need to provide complete **24-hour BP control**

- Patients with hypertension respond differently to the various classes of antihypertensive drugs
 - Most patients require combination therapy to reach goal
Compliance and Persistence are Central Components of Long-term Drug Therapy

Compliance: extent to which a patient acts in accordance with the prescribed interval and dose of dosing regimen (= adherence)

Persistence: accumulation of time from initiation to discontinuation of therapy

Prescribed regimen for 12 months
- Fully compliant for 12 months
- Fully persistent for 12 months
- Partial compliance
- Non-persistent (stop therapy before 12 months)
- Non-compliant and non-persistent
- Non-acceptance (does not start therapy)

Medication Compliance and Persistence Special Interest Group. International Society of Pharmacoeconomics and Outcomes Research (ISPOR)
Trends in Awareness, Treatment and Control of Hypertension in Korea

<table>
<thead>
<tr>
<th></th>
<th>Korea</th>
<th>US</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prevalence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m</td>
<td>34.4</td>
<td>30.2</td>
</tr>
<tr>
<td>f</td>
<td>26.5</td>
<td>25.6</td>
</tr>
<tr>
<td>Awareness</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m</td>
<td>-</td>
<td>47.8</td>
</tr>
<tr>
<td>f</td>
<td>-</td>
<td>65.9</td>
</tr>
<tr>
<td>Treatment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m</td>
<td>25.2</td>
<td>39.2</td>
</tr>
<tr>
<td>f</td>
<td>39.5</td>
<td>60.0</td>
</tr>
<tr>
<td>Control (All hypertensive pt)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m</td>
<td>7.6</td>
<td>19.9</td>
</tr>
<tr>
<td>f</td>
<td>16.6</td>
<td>35.0</td>
</tr>
<tr>
<td>Control (All treated pt)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m</td>
<td>30.2</td>
<td>50.7</td>
</tr>
<tr>
<td>f</td>
<td>42.0</td>
<td>58.4</td>
</tr>
</tbody>
</table>

The Third Korea National Health and Nutrition Examination Survey (KNHANES III), 2005
US NHANES 1999-2000, JAMA 2003;290;199 (% of adults aged 18 to 74 years)
Large Population of Patients Remain Untreated, Undiagnosed, or Diagnosed and Not Treated

Total US hypertension\(^1\) patients: 41.9 m

- 24% (9.7 m) Treated, controlled
- 28% (12 m) Treated, uncontrolled
- 48% (20.2 m) Undiagnosed or diagnosed + not treated

\(^1\) Hypertension defined as: 140/90 mmHg

Source:
- Epidemiology Database, The Mattson Jack Group, Hypertension, latest Epidata updates;
- Decision Resources, Decision Base 7, Hypertension Report, Mar 2003;
Over 60% of Treated Hypertensive Patients Require More than One Drug

Source: Datamonitor, Treatment algorithms Hypertension, 2003
Guidelines Recognize Growing Treatment Complexities and Recommend Tighter Control

For individuals with hypertension and:

<table>
<thead>
<tr>
<th>Guidelines</th>
<th>Without diabetes or renal disease</th>
<th>With diabetes or renal disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>JNC VII</td>
<td>BP goal <140/90 mmHg</td>
<td>BP goal <130/80 mmHg</td>
</tr>
<tr>
<td>ESH/ESC</td>
<td>BP goal <140/90 mmHg</td>
<td>BP goal <130/80 mmHg</td>
</tr>
<tr>
<td>WHO/ISH</td>
<td>BP goal <140/90 mmHg</td>
<td>BP goal <130/80 mmHg</td>
</tr>
</tbody>
</table>

Hypertension is Complicated by High Prevalence of Metabolic Disorders

Men

- 0: 19%
- 1: 26%
- 2: 25%
- 3: 22%
- 4+: 8%

Women

- 0: 17%
- 1: 27%
- 2: 24%
- 3: 20%
- 4+: 12%

Obesity
Glucose intolerance
Hyperinsulinaemia
Reduced HDL-C
Elevated LDL-C
Elevated triglycerides

>50% have two or more comorbidities

Hypertensive Patients with Metabolic Syndrome are at a Higher Risk of End-organ Damage

Prevalence of LVH on Echo (%)

<table>
<thead>
<tr>
<th></th>
<th>Without Metabolic syndrome</th>
<th>With Metabolic syndrome</th>
</tr>
</thead>
<tbody>
<tr>
<td>n=223</td>
<td>25.1</td>
<td>57.7</td>
</tr>
<tr>
<td>p<0.00001</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prevalence of microalbuminuria (%)

<table>
<thead>
<tr>
<th></th>
<th>Without Metabolic syndrome</th>
<th>With Metabolic syndrome</th>
</tr>
</thead>
<tbody>
<tr>
<td>n=223</td>
<td>19.3</td>
<td>36.2</td>
</tr>
<tr>
<td>p=0.002</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LVH: left ventricular hypertrophy
The RAAS Key Role in Hypertension and The Chronic Vicious Cycle of RAAS Upregulation

- Increased blood pressure
- End-organ damage
- Mechanical stress stimulates vessel RAAS
- Tissue damage stimulates further RAAS activation

Angiotensinogen \rightarrow Renin \rightarrow Angiotensin I \rightarrow ACE \rightarrow Angiotensin II

References:
- Arakawa K et al. Hypertension 2000;36:638–41
- Luft FC et al. Hypertension 1999;33:212–8
ACEI and ARB Block Chain Reaction, But Kidneys Try to Overcome Block by Increasing Renin /PRA
Crystal Structure of Renin

Angiotensinogen
Direct Renin Inhibitor, Aliskiren, Binds to The Active Site of Renin

Aliskiren binds to a pocket in the renin molecule, blocking cleavage of angiotensinogen to angiotensin I

Adapted from Wood JM, et al. 2003
Aliskiren Uniquely Lowers PRA

![Diagram showing the renin-angiotensin-aldosterone system (RAAS) with Aliskiren as a direct renin inhibitor, affecting PRA (renin-angiotensin-aldosterone system activity) uniquely.]
Effect of the Direct Renin Inhibitor Aliskiren, Either Alone or in Combination With Losartan, Compared to Losartan, on Left Ventricular Mass in Patients With Hypertension and Left Ventricular Hypertrophy: The ALiskiren Left Ventricular Assessment of Hypertrophy (ALLAY) Trial

Scott D. Solomon¹, Evan Appelbaum², Warren J. Manning², Anil Verma¹, Tommy Berglund³, Valentina Lukashevich⁴, Cheraz Cherif-Papst⁵, James Carten⁴, Björn Dahlöf³

¹Brigham and Women's Hospital, Boston, MA; ²Beth Israel Deaconess Medical Center, Boston, MA; ³Sahlgrenska University Hospital/Östra, Göteborg, Sweden; ⁴Novartis Pharmaceuticals Corp., East Hanover, NJ; ⁵Novartis Pharma AG, Basel, Switzerland
A double-blind, randomized, active-controlled trial in overweight patients with hypertension and LV hypertrophy

77 centers in 9 countries

Prior ACEI/ARB treatment 12 weeks
No prior ACEI/ARB treatment 2 weeks

Screening & washout phases 2 or 12 weeks

Baseline MRI

Titration phase

Aliskiren 150 mg
Losartan 50 mg
Aliskiren/Losartan 150/50 mg

Randomization
2 Weeks

Maintenance phase
34 weeks

Aliskiren 300 mg
Losartan 100 mg
Aliskiren/Losartan 300/100 mg

Addition of diuretics, and CCBs, α-blockers and/or vasodilators as necessary*

Final MRI

*To achieve BP target of < 140/90 mmHg (< 130/80 mmHg for patients with diabetes)
CCBs, calcium channel blocker; LV, left ventricular
77 centers in 9 countries
CMR for LV mass

Four-chamber end-diastole (ED)

Slice 1
Slice 2
Slice 3
Slice 4
Slice 5
Slice 6
Slice 7
Slice 8
Slice 9
Slice 10

BASE

APEX

slice thickness 10 mm
spatial resolution 2.0 mm x 2.0 mm
temporal resolution 30-50ms

LV, left ventricular; CMR, cardiac magnetic resonance
Effect on Mean Sitting BP of Aliskiren and Losartan Alone or in Combination from Baseline to Week 36

Aliskiren, 300 mg; Losartan, 100 mg; Aliskiren/losartan 300/100 mg

Data are shown as mean (+ SEM) from baseline to Week 36 for the efficacy population.
Effect on LV Mass Index of Aliskiren Alone or in Combination with Losartan from Baseline to Follow-up

Change in LV Mass Index (g/m²)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Mean ± SEM</th>
<th>Change (%)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aliskiren</td>
<td>-4.9 ± 1</td>
<td>-5.4%</td>
<td><0.0001</td>
</tr>
<tr>
<td>Losartan</td>
<td>-4.8 ± 1</td>
<td>-4.7%</td>
<td><0.0001</td>
</tr>
<tr>
<td>Aliskiren + Losartan</td>
<td>-5.8 ± 0.9</td>
<td>-6.4%</td>
<td>0.52</td>
</tr>
</tbody>
</table>

Mean (± SEM) for the efficacy population
LV, left ventricular
Hypertension and Heart Failure

- Approximately 5.2 million patients in the US and 10 million patients in Europe have heart failure (HF)\(^1,2\)
- Hypertension precedes HF in approximately 90% of patients with HF\(^3\)
- Despite many proven treatment options being available, the number of patients experiencing mortality due to HF is high and is increasing:
 - approximately 50% of patients with HF will die within 4 years of diagnosis\(^2\)
 - from 1994 to 2004, the number of deaths from HF increased by 28%\(^4\)
- Reasons for the increasing number of patients experiencing mortality due to HF include:
 - greater survival of patients with MI\(^5\) (a risk factor for HF)
 - an increasingly elderly population\(^2,5\) (HF is more prevalent in the elderly)
 - an increasing incidence of hypertension\(^6\) (a major risk factor for HF)

From Hypertension to CHF

Hypertension → Obesity, Diabetes, Smoking, Dyslipidemia → LVH → MI → Left Ventricular Remodeling → Subclinical Left Ventricular Dysfunction → Systolic Dysfunction → Diastolic Dysfunction → CHF → Death

Time, decades

Use of Antihypertensive Agents in Patients with HF

- Elevated systolic and diastolic BP are major risk factors for the development of HF1,2

- Consequently, hypertension precedes the development of HF in approximately 90% of patients with HF3

- Guidelines recommend that BP should be controlled in patients with concomitant hypertension and HF4

- Therefore, it is important that antihypertensive therapies can be safely continued in patients initially receiving treatment for hypertension who go on to develop HF

- However, not all antihypertensives are suitable for use in patients with HF

Not All Antihypertensive Agents are Suitable for Use in Patients with HF

| CCBs | • Most CCBs should be avoided in HF as they have a cardio-depressant effect\(^1\)
| | • CCBs are associated with increased risk of CV events and can lead to worsening HF\(^1\)
| | • Only vasoselective CCBs, such as amlodipine, do not adversely affect survival\(^1\) |

| β-blockers | • β-blockers can initially worsen symptoms of HF\(^2,3\)
| | • This effect can be minimized if therapy is initiated at low doses and gradually increased until tolerable therapeutic doses are reached\(^2\)
| | – β-blockers have been shown to significantly reduce mortality in patients with HF and are recommended as standard therapy, unless contraindicated\(^1\) |

| Direct acting vasodilators | • Potent direct acting vasodilators, such as minoxidil, should be avoided as they cause sodium retention\(^1\) |

| α-blockers | • There is no evidence for the use of α-blockers in the treatment of HF\(^4\) |

Why We Need Another Agent?; "Ceiling Benefit" of Neurohumoral Blocking

Breakthrough?

Reduction of mortality in heart failure

Ace-inhibitors
Beta-blockers
Aldosterone
ARBs

Presumed limit for current CHF drug treatment
ACEI + ARB Combinations Showed CV Benefits Beyond Monotherapy…

CV death or HF hospital admission in patients with HF and LVEF ≤40% and being treated with an ACEI

Placebo (n=1,272) Candesartan (n=1,276) Placebo (n=2,499) Valsartan (n=2,511)

15% 13.2%

p<0.001 p=0.021

Relative risk reduction (%)

CV morbidity and mortality in HF patients, 93% of whom were also taking an ACEI

Conclusion

- **End-organ damage** resulting from hypertension is a major public health issue worldwide. Unmet needs in morbidity and mortality remain, despite the success of existing therapies.

- Hypertension contributes to major CV outcomes and the global burden of the condition is projected to **increase**.

- There is an increased need for **combination therapy**.

- Hypertensive patients with metabolic disorders have an even higher risk of end-organ damage.

- Further progress is need to effectively **control the RAAS**.