Basics of Angiographic Interpretation
Analysis of Angiography

Young-Hak Kim, MD, PhD
Cardiac Center, University of Ulsan College of Medicine
Asan Medical Center, Seoul, Korea
What made us nervous...
What we do in angiographic analysis?

Qualitative and Quantitative Measurement of Angiography taken at preprocedure, postprocedure and follow-up
Good Angiography
The first for good analysis and technique dependent

- Angiography is only as good as the quality of the images taken
- Comprehensive diagnostic - no omissions
- Multiple views - foreshortening and overlap
- Catheter caliber - contrast streaming
- IC Nitroglycerin - vasospasm
Case Report Form of Angiographic Analysis

CardioVascular Research Foundation, Seoul

Study Information
- **Study name:**
- **Site:**
- **Patient ID:**
- **Cath date:**

Image
- **Catheter frame #**
- **Arterial frame #**

Qualitative Measurement

Morphology
- **Eccentric**
- **Bend**
- **Thrombus**
- **Tortuosity**
- **Calcification**
- **Ulceration**
- **Aneurysm**
- **Intimal flap**
- **Ectasia**

QCA
- **Prox Normal**
- **Distal Normal**
- **Inter normal**
- **MLD**
- **Lesion length**

Procedure

Pre-PTCA
- **Frames**
- **Frames (corr)**

Bifurcation
- **Side branch**
- **SBPreDS**

CVRF CardioVascular Research Foundation

Asan Medical Center
Angiography remains a gold standard

- Identifies lesion characters and complications of PCI
- TIMI flow
- Collateral circulation
- Distal embolization
- Vasospasm
- Dissections
- Slow/No reflow
- Perforations
Angiography: limitations are real

- Thrombus
- Extent of Calcium
- Severity of Intermediate Lesions
- Unstable/vulnerable plaque
- Bifurcation Lesions
- Can not provides functional data
Thrombus Visualization with a Freeze-frame
Thrombus and Calcium Diagnostic Considerations

• Thrombus
 ▪ Angiography: low sensitivity, high specificity
 ▪ Angioscopy is best diagnostic tool

• Calcium
 ▪ Angiography: low sensitivity for mild/moderate Ca, Moderate sensitivity for severe Ca
 ▪ IVUS is best diagnostic tool
Stenosis or Not at Ostial LCX?
Case Report Form of Angiographic Analysis in CardioVascular Research Foundation, Seoul

Cardiac Research Foundation

<table>
<thead>
<tr>
<th>Study name:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site:</td>
</tr>
<tr>
<td>Patient ID:</td>
</tr>
<tr>
<td>Cath date:</td>
</tr>
</tbody>
</table>

Quantitative Measurement

Morphology
- **Eccentric**
- **Bend**
- **Thrombus**
- **Tortuosity**
- **Calcification**
- **Ulceration**
- **Aneurysm**
- **Intimal flap**
- **Ectasia**

PRE-PROCEDURE
- **Pre-TIMI Frames**
- **Frames**
- **Frames (corr)**
- **Bifurcation**
- **Side branch**
- **SBPreDS**

QCA
- **Prox Normal**
- **Distal Normal**
- **MLD**
- **Lesion length**

Director / Fellow / Technician	Date
Surrogate End Points
As Quantitative Angiographic Measurements

- Minimal luminal diameter (MLD)
- Late loss
- Diameter stenosis
- Binary angiographic restenosis

- A reliable substitute for clinical end points in smaller studies
- To speed up trial progress
Interpolated Reference
standard to assess the degree of stenosis

- MLD = 1.3
- Mean reference: (3.5+2.2) / 2 = 2.85
 DS = (2.85-1.3) / 2.85 X 100 = 54.4%
- Interpolated reference: 3.2
 DS = (3.2-1.3) / 3.2 X 100 = 59.4%

- MLD = 0.5
- Mean reference: (3.5+2.2) / 2 = 2.85
 DS = (2.85-0.5) / 2.85 X 100 = 82.5%
- Interpolated reference: 2.5
 DS = (2.5-0.5) / 2.5 X 100 = 80.0%
Definition of Late Loss
Post-procedure MLD – F/U MLD

- Within the stent (in-stent)
- Within the analysis segment (in-segment)
- Within the segment, but separately considering the stented segment, proximal and distal edges and taking the maximum change in MLD within those 3 segments and applying it to this segment as a whole (maximal regional late loss)

Ellis SG et al. J Am Coll Cardiol 2005;45:1193
Late Loss

<table>
<thead>
<tr>
<th></th>
<th>Proximal edge</th>
<th>In-stent</th>
<th>Distal edge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post-procedure MLD, mm</td>
<td>2.7</td>
<td>3.0</td>
<td>3.1</td>
</tr>
<tr>
<td>F/U MLD, mm</td>
<td>2.4</td>
<td>2.2</td>
<td>1.8</td>
</tr>
<tr>
<td>Difference, mm</td>
<td>0.3</td>
<td>0.8</td>
<td>1.3</td>
</tr>
</tbody>
</table>

- **In-stent late loss**: $3.0 - 2.2 = 0.8$
- **In-segment late loss**: $2.7 - 1.8 = 0.9$ mm
- **Maximal regional late loss**: 1.3 mm
Advantage of Late Loss

- Useful indirect measurement of intimal growth
- No dependency of reference diameter
- Less patients to demonstrate the efficacy of device than restenosis or clinical outcomes
In-Segment vs. In-Stent Late Loss

• **In-stent late loss**
 - Reflect only the pure biologic potency of an antirestenotic device

• **In-segment late loss**
 - Potency of an antirestenotic device
 - Effect of margins of stents due to balloon injury and drug diffusion effects, etc
Negative Late Loss
What does it mean?

Potential Limitation of LL Indicating Intimal Growth

- LL does not indicate the intimal growth at the same site.
- Practically, standard techniques of measuring late loss have compared MLDs from a specified zone in in-stent, edge, or in-segment.
Measurement Error of LL
due to 2 measures from 2 different angiograms

- Different guiding catheters: 7Fr vs. 5Fr
- Not same projections

We need well-trained personnel, well-developed protocol, and monitoring program in measurement...
The "Step down" phenomenon is a major limitation of Standard QCA when applied to bifurcation analyses.
What does the late loss mean in bifurcation? Is it the LM, LAD, or LCX?

Left main coronary artery stenosis

- Acute Gain: BMS 2.06 vs. SES 2.73, \(P < 0.001 \)
- Late Loss: BMS 1.27 vs. SES 0.05, \(P < 0.001 \)
Late loss is only meaningful if the segment analyzed is specified

1 – Proximal Edge of the Prox PV Stent
2 – Prox PV Stent
3 – Distal PV Stent*
4 – Distal Edge of the PV Stent
5 – SB Stent*
6 – Distal Edge of the SB Stent*
7 – Carina
8 – Ostium of the SB (5mm)
9 – PV In-Lesion
10 – SB In-Lesion

*if additional stent(s) placed

Dedicated Bifurcation QCA Software

- **CardioVascular Research Foundation**
- **Asan Medical Center**

Bifurcation Segment Model

![Bifurcation Model](image)

### Ref A (mm²)	Plaque A (mm²)	%A (%)
Darina | 4.55 | 0.53 | 12

Ratio Dist/Prox at Ostium

<table>
<thead>
<tr>
<th>Luminal</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Murray</td>
<td>Finet</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

### Prox pos (mm)	Length (mm)	%D (%)	Min D (mm)	Max D (mm)	Mean D (mm)	Ref D (mm)
1 | 0.00 | 4.97 | 7.16 | 1.88 | 2.46 | 2.21 | 2.03
2 | 4.97 | 2.59 | 4.56 | 1.40 | 2.39 | 2.07 | 1.46
3 | 7.56 | 8.23 | 38.29 | 0.83 | 1.40 | 1.08 | 1.34
4 | 15.80 | 4.98 | 16.54 | 1.24 | 1.75 | 1.54 | 1.48
5 | 7.67 | 5.91 | 19.84 | 1.03 | 1.46 | 1.28 | 1.28
6 | 13.58 | 5.00 | 11.07 | 1.20 | 1.37 | 1.29 | 1.35
7 Main | 5.13 | 2.43 | 4.56 | 1.40 | - | - | 1.46
7 Side | 5.13 | 2.54 | 4.56 | 1.40 | - | - | 1.46
8 | 7.67 | 2.03 | 19.84 | 1.03 | 1.36 | 1.20 | 1.28
9 | 0.00 | 20.78 | 38.29 | 0.83 | 2.46 | 1.57 | 1.34
10 | 7.67 | 10.91 | 19.84 | 1.03 | 1.46 | 1.28 | 1.28

JEONG HYEONG JIN

- **ID**: 27288695
- **Birthdate**: 1931-4-8
- **Physician**: Asan Medical Center 4411
- **Hospital**: Rang
- **Acquisition Date**: 2006-8-7
- **Patient Orientation**: L/R
- **II Size**: 16.00 cm

- **Segment**: Nonostial
- **Trial Name**: Intervention
- **Analysis type**: Nonostial
- **Cat. Factor**: 0.133 mm²/kg
- **Cat. Object**: 7.00 French Catheter

CVRF CardioVascular Research Foundation

Asan Medical Center
Why do we need Core Lab?

- Scientific support
- Technical support
- Standard guideline
- Research resources
- Training
- Etc.