Fundamental and IVUS measurement

Myeong-Ki Hong, M.D., Ph.D

Professor of Medicine Department of Medicine, University of Ulsan College of Medicine Asan Medical Center, Seoul, Korea

IVUS is a solution!

Contents

- Basic Physics and Equipment
- Image Acquisition and IVUS Artifacts
- Histology
- Quantitative and Qualitative Assessment
- Reporting

Contents

- Basic Physics and Equipment
- Image Acquisition and IVUS Artifacts
- Histology
- Quantitative and Qualitative Assessment
- Reporting

Basic Physics of Sound

- Sound is a physical phenomenon that transfers energy from one point to another.
- Sound can pass only through matter.
- Ultrasound can be focused into small, welldefined beams that can probe the human body and interact with the tissue structures to form images

Piezoelectricity

Piezo- : from piezein (*Greek*), sqeeze or press
Conversion electricity to sound and vice versa

When a piezoelectric crystal is placed in an electric field, or when charges are applied by external means to its faces, the crystal exhibits strain, i.e. the dimensions of the crystal change.

Ultrasound imaging process

electric impulse

crystal

electric impulse

ASAN MEDICAL CENTER

Comparison of IVUS with other ultrasound

Technique	Transducer size (cm)	Depth (cm)	Intervening tissues
Trans-thoracic	> 2	~3 – 20	Skin, fat, muscle
Trans- esophageal	< 1.2	~2 – 20	Esophagus, atrium
Intravascular	< 0.26	~0.05 - 4	blood

In early period

ASAN MEDICAL CENTER

Equipment

Image quality

Spatial resolution

- The ability to discriminate small objects within the ultrasound image

- Axial : parallel to the beam
- Lateral : perpendicular to both the beam and the catheter

Contents

- Basic Physics and Equipment
- Image Acquisition and IVUS Artifacts
- Histology
- Quantitative and Qualitative Assessment
- Reporting

Image Acquisition pullback method

- Manual pullback
 - to concentrate on specific regions of interest
 - But, possible to skipping over and not to perform precise measurement
 - not reproducible
- Motorized pullback
 - precise, reproducible
 - to reconstruct image (L-mode, 3D)

Image Acquisition Longitudinal display (L-mode)

For spatial orientation, assessment of length, and distribution of plaque

IVUS artifacts non-uniform rotational distortion (NURD)

Full sector NURD

Isolated sector NURD

IVUS artifacts air bubble

Contents

- Basic Physics and Equipment
- Image Acquisition and IVUS Artifacts
- Histology
- Quantitative and Qualitative Assessment
- Reporting

Histology and IVUS

Histology and IVUS

The Three-Layered Appearance border identification

The Three-Layered Appearance border identification

- 1. Adventitia : the outer covering of the artery
- 2. Media : the actual wall of the artery
- 3. Intima : a layer of endothelial and other cells that make direct contact with the blood inside the artery
- 4. Lumen : the actual open channel of the artery through which the blood flows.

Contents

- Basic Physics and Equipment
- Image Acquisition and IVUS Artifacts
- Histology
- Quantitative and Qualitative Assessment
- Reporting

Quantitative measurement lumen measurements

ASAN MEDICAL CENTER

Quantitative measurements

- Measurem	hents On Current	NIH Volumetric Measurement	Diameter Mean Min M 2.03 1.81 2 4.47 4.27 4 % of Vessel) Compara	Aax Min/Max 2.38 0.76 4.74 0.90 tive Lumen Area	
	Area (mm^2)		Diame	ter (mm)]
		Mean	Min	Max	Min/Max
Lumen	3.16	2.03	1.81	2.38	0.76
Vessel	15.52	4.47	4.27	4.74	0.90
Stent					
Plaque NIH	12.36 (79.6%	of Vessel)	Compa	arative L	umen Area

Atheroma

ASAN MEDICAL CENTER

Atheroma = EEM - Lumen

Atheroma eccentricity = A - B / A

Atheroma burden = C - D / C

Quantitative measurement stent measurements

Quantitative measurement stent measurements

		Aeasurements On Cu Area (mm ²) Lumen Vessel 20.99 Stent 10.55 Plaque NIH /olumetric Measurem Lumen Vol Stent Vol	2] D Mean M 5.19 4. 3.69 3. [C ments On Pullback (n	49 3.99 0.88 omparative Lumen Area		
Measurer	nents Un Cu Area (mm^)	Current Frame Diameter (mm))
Lumen]		Mean	Min	Max	Min/Max
Vessel	20.99		5.19	4.91	5.46	0.90
Stent	10.55		3.69	3,49	3,99	0.88
Plaque NIH				Compa	arative L	umen Are

ASAN MEDICAL CENTE

Contribution of inadequate arterial remodeling to the development of focal coronary artery stenoses: an IVUS study

Quantitative measurement negative remodeling

Atheroma Morphology Normal

IMAGING & PHYSIOLOGY Summit 2008

Atheroma Morphology Soft plaque

Atheroma Morphology fibrotic plaque

Atheroma Morphology Calcium

Atheroma Morphology rupture

Atheroma Morphology lipid core

Atheroma Morphology thrombus

Contents

- Basic Physics and Equipment
- Image Acquisition and IVUS Artifacts
- Histology
- Quantitative and Qualitative Assessment
- Reporting

Reporting of IVUS results

Appropriate patient demographic information and date Indication and brief description of procedure ✓ Basic findings : MLD, minimum stent area, or plaque burden... ✓ Plaque features : dissection, calcium, or thrombus... Changes of therapy by IVUS IVUS-related complications and any consequent therapy.

ACC Clinical Expert Consensus. J Am Coll Cardiol. 2001

MAGING & PHYSIOLOGY Summit 2008

In my opinion

When you meet the complex cases, IVUS will help you at any time and answer you clearly about difficult questions

Image quality

Contrast resolution

 the distribution of the gray scale of the reflected signal and is often referred to as dynamic range