IVUS: Pre-Intervention Assessment and Optimizing Final Result

Gary S. Mintz, MD

Cardiovascular Research Foundation
New York, NY

Disclosure Statement of Financial Interest

Within the past 12 months, I have had a financial interest/arrangement or affiliation with the organization(s) listed below.

Affiliation/Financial Relationship
Grant/Research Support
Consulting Fees/Honoraria
Major Stock Shareholder/Equity
Royalty Income
Ownership/Founder
Intellectual Property Rights
Other Financial Benefit

Company
BostonScientific, Volcano
BostonScientific, Volcano, LightLab, Terumo
Volcano

Most of the concepts used in IVUS-guided intervention are no different from those used in angiography-guided intervention. However, unlike angiography, IVUS is actually able to make precise measurements and assess lesion morphology.

- Weigh potential problems (i.e. LM disease, significant proximal or distal disease)
- Assess lesion severity
- Assess unusual lesion morphology (i.e., aneurysms, calcium, thrombi, in-stent restenosis, etc.)
- Measure vessel size
- Measure lesion length
- Determine and fine-tune the final result of interventions
- Assess complications

Validation of IVUS Assessment of Ischemia Producing Stenosis (Doppler FloWire and SPECT)

	IVUS MLA $\geq 4.0 \mathrm{~mm}^{2}$	IVUS MLA $<4.0 \mathrm{~mm}^{2}$
$\mathrm{CFR}<2.0$	2	27
$\mathrm{CFR} \geq 2.0$	39	4

Diagnostic accuracy $=92 \%$. (Abizaid et al, AJC 1998;82:42-8)

	IVUS MLA $\geq 4.0 \mathrm{~mm}^{2}$	IVUS MLA $<4.0 \mathrm{~mm}^{2}$
+ Spect	4	42
- Spect	20	1

Diagnostic accuracy = 93\%. (Nishioka et al, JACC 1999;33:1870-8)

Validation of IVUS Assessment of Ischemia Producing Stenosis (Pressure Wire)

Comparison of IVUS and pressure wire (measurement of fractional flow reserve: FFR $_{\text {myo }}$)

Takagi, et al. Circulation 1999;100:250-5

	Sensitivity	Specificity
AS $>70 \%$	100%	68%
MLD $<1.8 \mathrm{~mm}$	100%	66%
MLA $<4.0 \mathrm{~mm}^{2}$	82%	56%
Length $>10 \mathrm{~mm}$	41%	80%

IVUS Criteria for a 'Significant’ Stenosis

- Based on the studies comparing IVUS to flow wire, pressure wire, or SPECT thallium and based on studies with clinical outcome - most feel that a lumen area less than $4.0 \mathrm{~mm}^{2}$ in a proximal epicardial artery excluding the Left Main (and SVGs) is a flow limiting stenosis

Clinical Follow up in 357 Intermediate Lesions in 300 Pts Deferred Intervention After IVUS Imaging

Death/MI/TLR

IVUS MILA (mm^{2})

TLR

IVUS MILA (mm²)

- Death/MI/TLR @ (mean) 13 mos = 8\% overall (2% death/MI and 6\% TLR)
- Death/MII/TLR @ (mean) 13 mos $=4.4 \%$ in lesions with MLA $>4.0 \mathrm{~mm}^{2}$
- Only independent predictor of death/MI/TLR was IVUS MLA ($\mathrm{p}=\mathbf{0 . 0 0 4 1 \text {) }}$
- Independent predictors of TLR were DM ($\mathrm{p}=0.0493$) and IVUS MLA ($\mathrm{p}=0.0042$)

Of all the coronary segments, the LM has the greatest angiographic variability - I

Comparison between percent stenosis assessment from the quality control (QC) lab vs the clinical site in the CASS Study

*area of the square is proportional to the number of cases

Of all the coronary segments, the LM has the greatest angiographic variability - II

Five grades of LM \# of grades of difference in assessment
severity
1: $\quad 0-24 \%$ DS
2: $\quad 25-49 \%$ DS
3: $\quad 50-74 \%$ DS
4: $75-89 \%$ DS
5: $\quad 90-100 \% \mathrm{DS}$
of LM severity
0: no difference
+1 or -1: 1 grade difference
+2 or -2: 2 grades of difference
+3 or -3: 3 grades of difference
+4 or -4: 4 grades of difference

But surely we are better today!

- 51 intermediate or equivocal LM lesions were evaluated by FFR and angiography. Four experienced interventional cardiologists visually classified lesions as 'significant', 'not significant', or 'unsure.'
-The 4 experienced interventional cardiologists achieved correct lesion classification in no more than $\sim 50 \%$ of each case regardless of the FFR threshold (≤ 0.75 or ≤ 0.80).
- Interobserver variability was large, resulting in unanimous correct lesion classification in only 29\%!

Follow-up of 122 patients with moderate LM disease

Independent predictors of MACE @11.7 months: DM ($\mathrm{p}=0.004$), untreated lesion $>50 \%(p=0.037)$, and IVUS MLD ($\mathrm{p}=0.005$) - but NOT the plaque burden.

IVUS determinants of LMCA FFR <0.75

IVUS assessment of LM disease significance is based on lumen dimensions, not plaque burden

Plaque burden (P\&M/EEM) $=68 \%$ MLA $=7.2 \mathrm{~mm}^{2}$

Which of these LMCA lesions is significant and, therefore, should be treated? And which is not??

Unusual Lesions

- Filling Defects
- Aneurysms
- Acute Coronary Syndromes
- Spontaneous Dissections
- Hazy Lesions

σ

IVUS Classification of Angiographic Aneurysms

- Of 77 angiographic aneurysms
- 21 (27\%) true aneurysm
- 3 (4\%) pseudoaneurysm
- 12 (16\%) complex plaques or unhealed dissections
- 41 (53\%) normal segment adjacent to one or more stenoses

	True Aneurysm	PSA	Complex Plaque	Normal Site with Adjacent Stenoses
No prior PCI	10	0	6	26
Prior PCI	11	3	6	15

Pre-, Inter-, and Post-Procedure IVUS

- Pre-intervention
- Measure vessel size and lesion length to select DES size and length
- Assess unusual lesion morphology
- Post-intervention
- Expansion*: Absolute stent CSA or stent CSA relative to a pre-defined reference or target area/diameter
- Apposition*: Contact between stent and vessel wall
- Full lesion coverage
- Complications
*While expansion and apposition can co-exist, they not the same. The prognostic implications are different, and the solutions are different. These terms should NOT be used interchangeably

IVUS vs QCA measurements of reference lumen dimensions (3311 nonostial lesions)

IVUS vs QCA measurement of lesion length

IVUS length (mm)

IVUS-QCA length= $0.6 \pm 7.2 \mathrm{~mm}$

Stent sizing using IVUS

Max LD $=3.3 \mathrm{~mm}$

Max LD $=3.5 \mathrm{~mm}$

Predictors of DES Thrombosis \& Restenosis

	DES Thrombosis	DES Restenosis
Underexpansion	-Fujii et al. J Am Coll Cardiol 2005;45:995-8) - Okabe et al., Am J Cardiol. 2007;100:61520	- Sonoda et al. J Am Coll Cardiol 2004;43:1959-63 -Hong et al. Eur Heart J 2006;27:1305-10 - TAXUS IV, V, VI metaanalysis -Fujif et al. Circulation 2004;109:1085-1088
Edge problems (geographic miss, secondary lesions, large plaque burden, etc)	-Fujii et al. J Am Coll Cardiol 2005;45:995-8) - Okabe et al., Am J Cardiol. 2007;100:61520	- Sakurai et al. Am J Cardiol 2005;96:1251-3 -Liu et al, Am J Cardiol, in press -Costa et al, Am J Cardiol, 2008;101:1704-11

Cypher in SIRIUS*

By definition, sensitivity/specificity curve analysis "must" identify a single MSA that best separates restenosis from no restenosis

Cypher at AMC*

"Optimal" MSA and TLR after LMCA DES Implantation $(\mathrm{n}=595)$

Minimum stent area (mm^{2})

Manufacturer's Compliance Charts Cannot Be Used to Guarantee Adequate Stent Expansion

Comparison of IVUS-measured minimum stent diameter (MSD) and minimum stent area (MSA) with the predicted measurements from Cordis (Cypher in yellow, $n=133$) and BSC (Taxus in red, $n=67$). DES achieve an average of only 75\% of the predicted MSD (66\% of MSA)

Comparison of 9-month QCA edge restenosis vs reference lumen area and plaque burden in TAXUSIV, V, and VI ($\mathrm{n}=810$)

Perforation

