

TAVR Imaging: Preprocedural CT Imaging for Transcatheter Aortic Valve Replacement

Philipp Blanke, MD

Department of Radiology University of British Columbia & St. Paul's Hospital, Vancouver

Disclosures

Consultant to

Edwards Lifesciences Inc.

Neovasc Inc.

Tendyne

Circle Cardiovascular Imaging

SPH Cardiac CT Core Lab, providing services to

Edwards Lifesciences Inc.

Neovasc Inc.

Tendyne Holdings Inc.

Essentials of CT aortic valve assessment

... suboptimal outcome

Essentials of CT aortic valve assessment

Reason for suboptimal outcome

Among others...

- Erroneous anatomical measurements
- Measurements on suboptimal or insufficient imaging data

Five Essentials of CT aortic valve assessment

Five Essentials

1. CT Data Acquisition

The Basis for Everything

CT Data Acquisition for TAVI-Planning

What you want...

...Combined assessment of the aortic root and iliofemoral vasculature!

CT Data Acquisition for TAVI-Planning

What you need...

cardiac ECG-assisted data acquisition

+

Non-gated CTA of the thorax, abdomen and pelvis

ECG-assisted data acquisition of the thorax

+

Non-gated CTA of the abdomen and pelvis

Retrospectively ECG-gated CTA

Retrospective ECG-gated helical data acquisition without dose modulation

Image reconstruction window at mid-systole

Retrospectively ECG-gated CTA

Retrospectively ECG-gated CTA

Reconstruction within window of full tube current (here diastole)

Reconstruction outside of window of full tube current (here systole)

Retrospectively ECG-gated CTA

Data reconstruction

Full cardiac cycle

'cine', 'functional', 'multiphase', '4D-CT'

Fundamentals

Definition

Definition

Show you work.....

Incorrect Plane

Wrong orientation

Incorrect Plane

Wrong orientation and Too low

Different approaches

- Manual segmentation with MPRs
- "facilitated" segmentation by placing landmark points
- "semi-automated" segmentation (computer-based algorithms)

Measurements

Blanke, Leipsic Radiology 2013

3. Annular dynamism

Changes throughout cardiac cycle

Annular dynamism

Changes throughout cardiac cycle

Blanke et al. JACC Interv. 2012

Annular dynamism

Changes throughout cardiac cycle

Blanke et al. JACC CV Interv. 2012

Centre for Heart Valve Innovation St. Paul's Hospital, Vancouver

4. Oversizing

Know what this means

Oversizing

Annular geometry

Relative oversizing by area [%] = [(nominal prosthesis area/CSA)-1] *100

Relative oversizing by D_A [%] = [(nominal prosthesis diameter/ D_A)-1] *100

Relative oversizing by perimeter [%] = [(nominal prosthesis perimeter/P)-1] *100.

Relative oversizing by $D_P[\%] = [(nominal prosthesis diameter/D_P)-1] *100.$

Relative oversizing by TEE [%] = [(nominal prosthesis perimeter/ $TEE_{Annulus}$)-1] *100.

Blanke et al. JCCT 2014

Oversizing

Dependency on geometrical measurements

$$A=\pi r^2$$

Blanke et al. JCCT 2014

Integration of CT

SAPIEN XT - Area-based sizing

Vancouver Sizing Guidelines

Table 1 Multidetector Computed Tomography Annular Area Sizing Algorithm

Percentage of Annular Area Oversizing, %

0.2355.835	WORLSWICK CONTRACTOR	antiski stassa sa sa	ALCEN .
20-mm THV	23-mm THV	26-mm THV	29-mm THV
NR			
NR (30.9)			
25.7 UE			
20.8 UE			
16.4			
12.2			
8.3			
4.7			
1.3	NR		
NR (-1.9%)	29.8 UE		
	25.9 UE		
	22.2 UE		
	18.7		
	15.4		
	12.3		
	9.3		
	6.5		
	3.9	NR	
	1.3	NR (29.5)	
	NR (-1.1)	26.4 UE	
	100000 2000 00	23.5 UE	
		20.7 UE	
		18.0	
		15.4	
		13.0	
		10.6	
		84	
		6.2	
		41	ND
		21	NR (27.0)
		2.1	24 C UE
		0.2	29.0 00
			22.3 UE
			20.1 UE
			11.5
			10.9
			13.9
			10.1
			10.1
			6.5
			0.0
			9.6
			3.2
			1.6
	20-mm THV NR (30.9) 25.7 UE 20.8 UE 16.4 12.2 8.3 4.7 1.3 NR (-1.9%)	20-mm THV 23-mm THV NR 110 NR (30.9) 25.7 UE 20.8 UE 104 12.2 8.3 4.7 1.3 NR (-1.9%) 29.8 UE 22.2 UE 18.7 15.4 12.3 9.3 6.5 3.9 1.3 NR (-1.1) NR (-1.1)	20-mm THV 23-mm THV 26-mm THV NR 30.9) 25.7 UE 1000000000000000000000000000000000000

Different Sizing Algorithms for Different Valves SAPIEN 3

It may not always be possible to implant the larger THV size for borderline annulus diameters. Consider the smaller THV in the following special situations:

- Severe annulus calcification
- Narrow root and low coronary ostia
- Narrow sinotubular junction
- Mitral annular calcification
- Porcelain aorta
- Bulky leaflet and low coronary ostia

If/when outside of recommended range:

1) Reference alternative sizing modalities (echocardiography, balloon sizing) 2) Consider the following factors in valve size selection

consider the following factors in valve size selection

 Clinical: very advanced age, corticosteroids, chest radiation, extensive calcification, calcium extending into the LVOT, etc

Iold = recommended	Sealing 2	Zones relate	only to va	lves that are	e deployed	with nominal	volumes
--------------------	-----------	--------------	------------	---------------	------------	--------------	---------

3D Area-derived Dia	20.0 2	20.2	20.5	20.7	21.0	21.1	21.4	21.7	22.0	22.3	22.6	22.8	23.0	23.1	23.4	23.7	23.9	24.0	24.2	24.5		
3D Annular Area (m	m²)	314	320	330	338	346	350	360	370	380	390	400	410	415	420	430	440	450	452	460	470	
% Annular Area Over (+) or Under (-) Nominal by 3D CT	23 mm	29.3	26.9	23.0	20.1	17.3	16.0	12.8	9.7	6.8	4.1	1.5	-1.0	-2.2	-3.3	-5.6	-7,7	-9,8				
	26 mm											29.8	26.6	25.1	23.6	20.7	18.0	15.3	14.8	12.8	10.4	
	29 mm			f.											ĵ.					1		

ALL VALUES PRESENTED ARE BASED ON NOMINAL/RECOMMENDED INFLATION VOLUMES.

SYSTOLIC MEASURES ARE RECOMMENDED

24.5	24.7	25.0	25.2	25.5	25.7	26.0	26.2	26.4	26.5	26.7	26.9	27.2	27.4	27.6	27.9	28.0	28.1	28.3	28.5	28.8	29.0	29.2	29.4	29.5	29.6	29.9	30.1	30.3
470	480	490	500	510	520	530	540	546	550	560	570	580	590	600	610	615	620	630	640	650	660	670	680	683	690	700	710	720
10.4	8.1	5.9	3.8	1.8	-0.2	-2.1	-3.9	-4.9	-5.6	-7.3	-8.9																	
			29.8	27.3	24.8	22.5	20.2	18.9	18.0	15.9	13.9	11.9	10.0	8.2	6.4	5.5	4.7	3.0	1.4	-0.2	-1.7	-3.1	-4.6	-5.0	-5.9	-7.3	-8.6	-9.9

Results (2) PAR Stratified by % Oversizing by Area

No annular rupture

CoreValve Sizing Ratio and Mod/Severe PVL

[(CoreValve Perimeter – Annulus) / Annulus] x 100

Annulus sizing

Perimeter

5. Valve morphology

Know what this means

Bicuspid aortic valves

Classification

Adapted from Sievers et al. 2007

Bicuspid aortic valves

Type 1

Bicuspid aortic valves

'Many faces of Type 1'

Unifying characteristic: Raphe

Valve anatomy

Bicuspid

"I'm still waiting for the the transformed but I'm fairly certain that what fell on you was either a stalactite or a stalagmite."

Stalactite

Essentials of CT aortic valve assessment

Thanks for you attention!

