Diagnosis and Physiologic Understanding of Low Gradient Severe AS

Jae-Kwan Song, MD, FACC Asan Medical Center University of Ulsan College of Medicine

Two Indices of Quantification in Valvular Stenosis

Degree of	Lesion
Overloading	Severity
Pressure gradient	Valve area
Doppler equation:	Direct planimetry,
$\Delta P = 4V^2$	PHT method,
Invasive	Continuity equation
catheterization	Gorlin method

Current Definition of Tight AS

Guidelines/ recommendations	Parameter
AHA/ACC	AVA <1.0 cm ²
ESC	AVA/BSA <0.6 cm ²
Otto	Vmax >4.0 m/s
AHA/ACC	ΔPm >40 mmHg

Immediate Post-op

5 Mo later

Inconsistencies of echocardiographic criteria for the grading of aortic valve stenosis

3,487 echo studies for AS with normal LV systolic function

Percentage of pts diagnosed with severe AS depending on which echocardiographic criterion was used

Guidelines/ recommendations	Parameter	Patients with severe stenosis
AHA/ACC	AVA <1.0 cm ²	69%
ESC	AVA/BSA <0.6 cm ²	76%
Otto	Vmax >4.0 m/s	45%
AHA/ACC	ΔPm >40 mmHg	40%

European Heart Journal (2008) **29**, 1043–1048 doi:10.1093/eurheartj/ehm543

Inconsistencies of echocardiographic criteria for the grading of aortic valve stenosis

3,487 echo studies for AS with normal LV systolic function

Inconsistencies of echocardiographic criteria for the grading of aortic valve stenosis

3,487 echo studies for AS with normal LV systolic function

AVA (cm²)	Mean gradient (mmHg)	
4	1.7	• Curve fitti
3	2.9	between A
2	6.6	Gorlin equ
1	26	
0.9	32	• AVA 1.0 0
0.8	41	
0.7	53	• PG 40mn
0.6	73	• Vmax 4m
0.5	105	

AVA(Gorlin formula) = $\frac{\text{CO} \div (\text{SEP} \times \text{HR})}{44.3\sqrt{\text{mean gradient}}}$

•	Curve fitting for the relationship
	between AVA and PG using
	Gorlin equation

- AVA 1.0 cm²: PG = 21mmHg
 Vmax = 3.3m/s
- PG 40mmHg: AVA = 0.75cm²
- Vmax 4m/s: AVA = 0.82cm²

How to Overcome Inconsistency?

Validation of your numbers

Pressure recovery

AS as a systemic disease

Pitfalls of PG in AS

How to Overcome Inconsistency?

Validation of your numbers

Pressure recovery

AS as a systemic disease

Pressure Recovery (1)

Flow

- **1. Proximal convergence**
- 2. Vena contracta distal to the limiting orifice:
 - Contraction coefficient

effective area

anatomic area

3. Distal expansion: pressure recovery (P2-P3)

P1-P2 = PG by Doppler

P1-P3 = PG by Cath

Pressure Recovery in Human

Circ 1994;89:116

Catheterization vs. Doppler Misclassification Toward Higher Degrees

JACC 2003;41:435

Pressure Recovery (2)

- Real physical phenomenon
- Reduce the work load on the LV, which is proportional to the net pressure head loss x flow rate
- Should be predictable

$$P3 - P2 = 4Vmax^{2} \times \frac{2 \times AVA}{AoA} \times \frac{AoA - AVA}{AoA}$$

AVA = effective orifice area (Doppler) AoA = area of the ascending aorta

> J Biomechanics 1976;9:521 J Biomechanics 1976;9:567

Pressure Recovery (3)

- Correction using "energy loss coefficient"
 Doppler EOA x AoA / (AoA-EOA)
- The need for correction occurs primarily in patients with mild to moderate AS and smaller aorta

 $(EOA > 0.8 \text{ cm}^2 \& \text{ aortic diameter} < 3.0 \text{ cm})$

EOA = 0.9 cm ²	Aortic diameter	EOA by cath
	2.6 cm	1.1 cm²
	4.0 cm	0.9 cm ²

Different definition of tight AS: 0.75 vs. 1.0 cm²

JACC 2003;41:435 JACC 2003;41:443

Pressure Recovery (4)

3 geometric variables of the stenosis and the receiving compartment determining the degree of PR

✓ Aorta size
✓ Aortic valve area
✓ Direction of stenotic jet (eccentric vs. central)

Circ 1996;94:1934

Correction using "energy loss coefficient"
 Doppler EOA x AoA / (AoA-EOA)
 = 1.0 x 3.46/(3.46-1.0)
 = 1.4 cm²

Asian Valve Registry Data

Frequency of Reclassification from Severe to Moderate AS According to STJ Diameter and Mean PG

Asian Valve Registry Data

How to Overcome Inconsistency?

Validation of your numbers

Pressure recovery

AS as a systemic disease

Paradoxical Low Flow Low Gradient AS

- 57/male
- classic angina
- calcified Ao valve
- LVH with small cavity volume
- Mean gradient =
 22 mmHg
- AVA = 1.0 cm2
- BP 150/76 mmHg
- LV systolic p = 175 mmHg

C Two-D Echocardiogram

B CW Doppler

D Cardiac Catheterization

Look at the Aorta And Arteries

Courtesy of Dr. Pibarot

Patients with calcific AS often have concomitant hypertension

30-80% of patients with calcific AS have hypertension

Valvulo-arterial Impedance (Zva)

JACC 2005;46:291 & Circ 2007;115:2856

"Paradoxical" Low-Flow, Low-Gradient AS with Preserved LVEF

↑Age Women Hypertension MetS – Diabetes

LVEF=60% SV=46 mL MG=29 mmHg

Courtesy of Dr. Pibarot

Paradoxical Low Flow Low Gradient AS with High Valvuloarterial Impedance (Zva)

Paradoxical Low Flow Low Gradient AS with High Valvuloarterial Impedance (Zva)

Paradoxical Low Flow Low Gradient AS

Paradoxical Low-Flow, Low-Gradient Severe Aortic Stenosis Despite Preserved Ejection Fraction Is Associated With Higher Afterload and Reduced Survival

Circ 2007;115:2856

Factors Associated with LVH in AS

AMC data – AHA'11

European Heart Journal (2010) **31**, 281–289 doi:10.1093/eurheartj/ehp361

Paradoxical low flow and/or low gradient severe aortic stenosis despite preserved left ventricular ejection fraction: implications for diagnosis and treatment

- A recently described clinical entity
- Relatively frequent (up to 35% of cases)
- A more advanced stage
- Poorer prognosis if treated medically rather than surgically
- Definition: PG (40 mmHg) and SV (35 mL/m²)

How to Overcome Inconsistency?

Validation of your numbers

Pressure recovery

AS as a systemic disease