Challenging Situations: LV Dysfunction

Professor Darren Walters

University of Queensland Heart Lung Institute The Prince Charles Hospital

Disclosure

- Consultant and proctor to Edwards, Boston, St Jude.
- Clinical trial arrangements with Edwards, Boston, St Jude, Abbott, Symentis, Medtronic.

Case Study

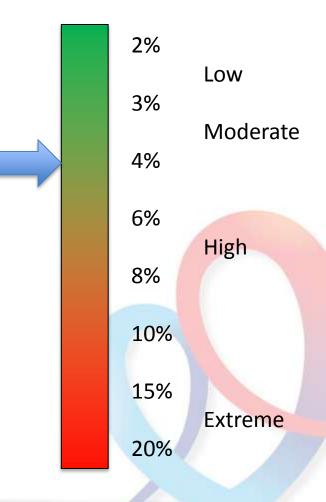
Age: 83 years Gender: M

Height: 171 cm Weight: 60 kg BMI: 20.5 kg/m²

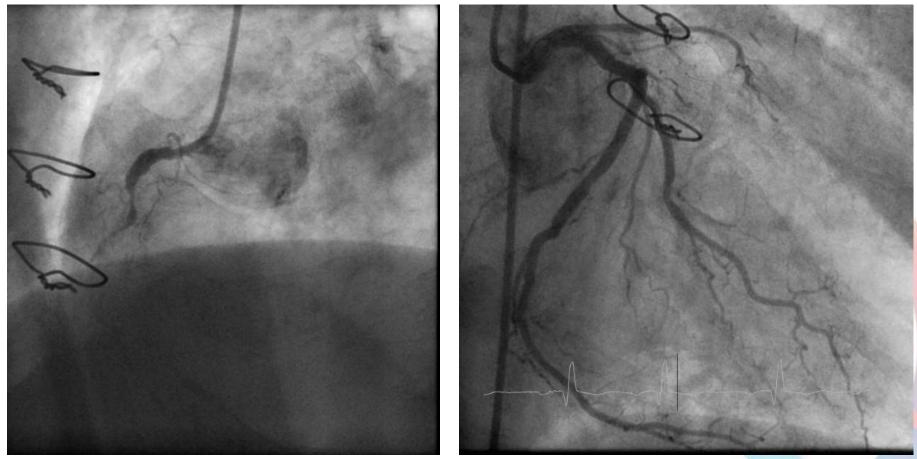
Resides: Lives with wife

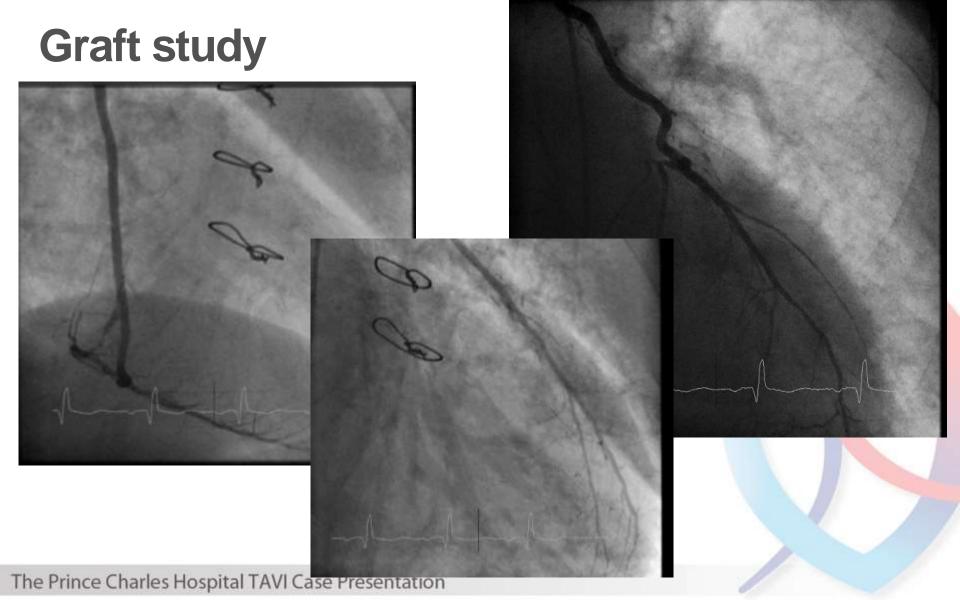
Medical history I

- Symptoms- NYHA 2
- Aortic stenosis low flow low gradient
 - diffuse thickening AV + reduced leaflet excursion
 - AVA 1cm2, Vmax 3.5, MPG 32mmHg
- PBAV 14/10/15
 - gradient fell from 25 mmHg to 12 mmHg
- Left ventricular function
 - EF 30%

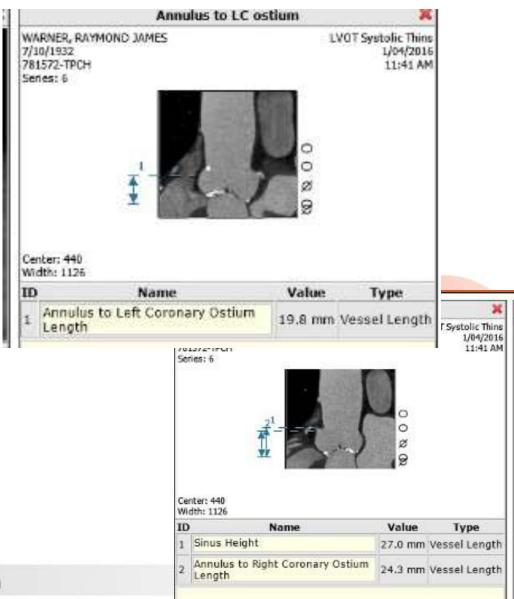

Medical history II

- Coronary artery disease- IHD , CABG 2000 (LIMA LAD, SVG RPDA, SVG Ramus)
- Cerebrovascular disease –nil
- Peripheral vascular disease nil
- Respiratory disease mild airflow obstruction, impaired gas transfer (FEV1 77%, FVC 94% DLCO 47%, KCP 66%)
- Renal disease nil
- Gl/haematological/bleeding GORD
- Other hernia operation, rheumatoid arthritis,


Surgical Risk Scores


- STS mortality 4.1%
- STS morbidity 22.7% and mortality

- Euroscore 50%
 logistic
- Euroscore II


Coronary Artery Evaluation

CT Valve Evaluation

Aortic Evaluation


Calcified bulky leaflets?	Distance coronary ostia – annulus (≥10mm)	Right 24.3mm Left 19.8mm
Horizontal aorta?	Define optimum view (3 leaflets aligned)	
Porcelain aorta?		
15 Distance 37.90 mm X3 Distance 26.07 mm X1 Distance 42.09 mm		
A VILLANDER MEDICE - 192	on	

Peripheral Access Evaluation

Minimum diameter by angio **7.3mm**

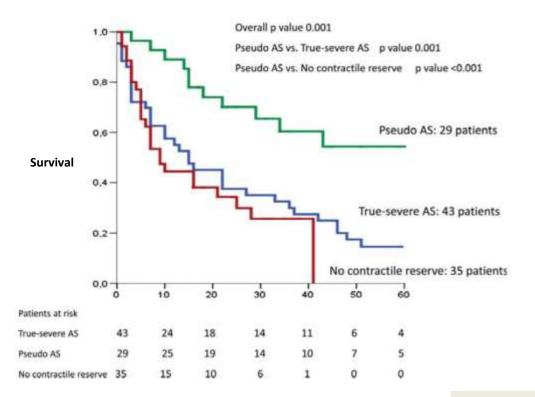
Right

Minimum diameter by CT 8mm

Left

Minimum diameter by angio 6.7mm Minimum diameter by CT 9mm

Challenging case of LV dysfunction


- How do we establishing the diagnosis?
- Is the risk of procedure increased?
- Will the ventricle recover post TAVI?
- What is the prognosis without TAVI ?
- Will the prognosis be improved by TAVI?

Challenging case of LV dysfunction

- How do we establishing the diagnosis?
- Is the risk of procedure increased?
- Will the ventricle recover post TAVI?
- What is the prognosis without TAVI ?
- Will the prognosis be improved by TAVI?

Low gradient, low EF AS

the importance of differentiation from pseudosevere AS

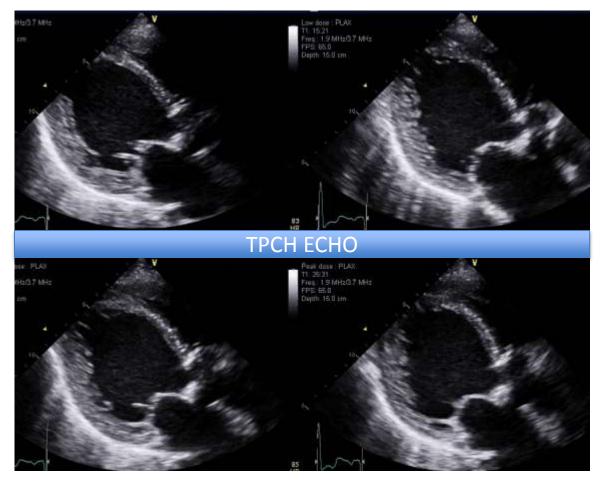
N = 107 patients managed conservatively (out of 305 from European LF, Low EF AS registry) MPG<40mmHG, LVEF<40%,AVA<1.0cm2.

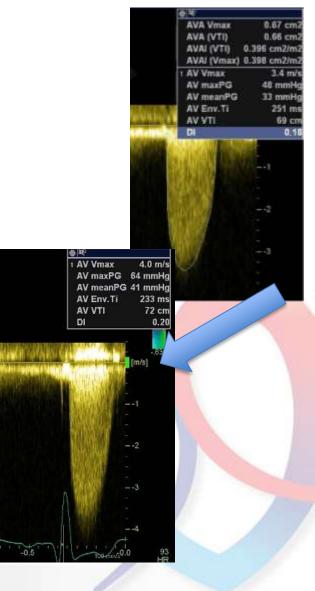
Pseudosevere AS shown to have low event rate out to 5 years, in comparison to the poor outcomes seen with untreated severe AS or severe AS with no CR

Fougeres et al. Eur Heart J 2012;33:2426-2433

Low gradient, low EF AS

- Important to Identify true severe aortic stenosis from pseudo-severe aortic stenosis
- Untreated mortality is high
- Treated either by surgery or TAVI prognosis improved

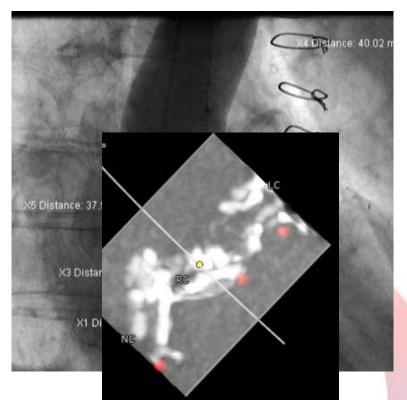

Low flow Low Gradient Algorithm LVEF < 40% $\Delta P < 40$ EOA < 1.0 **Dobutamine Stress Echo** ↑ SV > 20% ↑ SV < 20% **LV Flow Reserve No LV Flow Reserve** (EOA Proi < 1.0-1.2)* (CT Ca > 1650) AP < 40" & EOA > 1.2" △P > 40" & EOA < 1.2" (EOAproj > 1.0-1.2) (EOA_{Proi} < 1.0-1.2) (CT Ca < 1650) (CT Ca > 1650) Yes No True-Severe AS True-Severe AS Pseudo-Severe AS SAVR (High Op. Risk) SAVR + CABG MEDICAL Rx TRIAL TAVR?


Dobutamine Echo 8/10/15

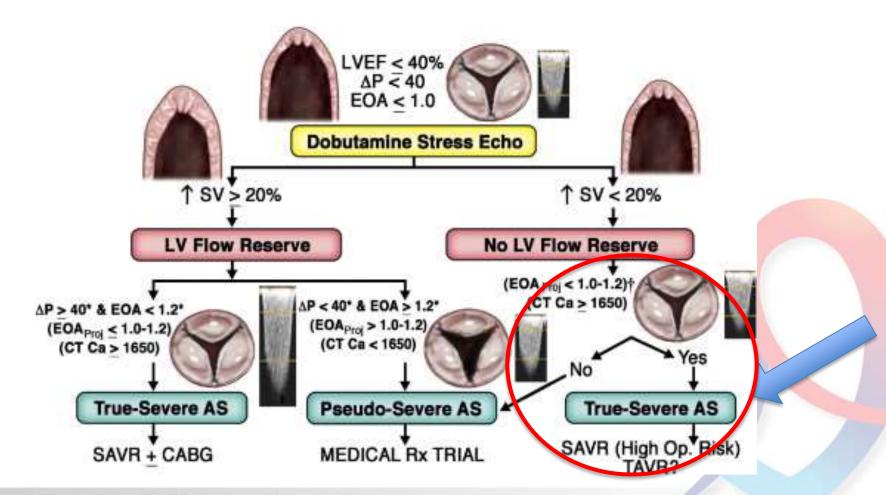
1. Resting echo:

Severe LV systolic dysfunction. EF 20 %, GLS -7% Aortic Valve: Low flow low gradient severe AS AVA 0.64 cm² . MG = 33mmHg. AR grade 1-2/4. MR 2-3/4

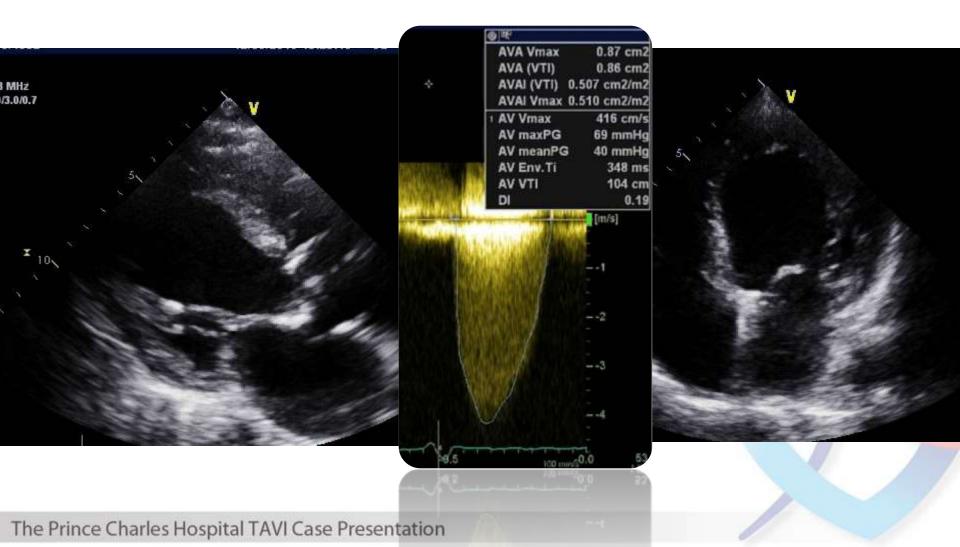
Dobutamine Echo 8/10/15



DSE 8/10/15


Low Dose Dobutamine stress echo: Severe LV systolic dysfunction Lack of LV contractile reserve. EF 21%, GLS -7%

Aortic valve: Low flow low gradient severe AS AVA 0.72 cm², MG = 41mmHg. AR grade 1-2/4.


Severe anatomic calcification

Low flow Low Gradient Algorithm

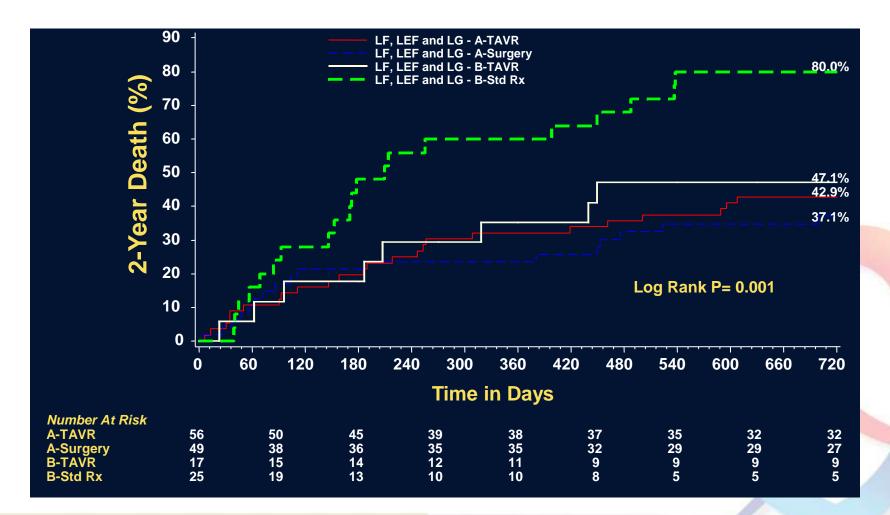
Echo Evaluation 12/08/16

Challenging case of LV dysfunction

- How do we establishing the diagnosis?
- Is the risk of procedure increased?
- What is the prognosis without TAVI ?
- Will the prognosis be improved by TAVI?
- Will the ventricle recover post TAVI?
- Does LV function impart a worse prochosis with TAVI compared to Normal LVEF?

Transcatheter aortic valve implantation in patients with LV dysfunction

Elhmidi Y¹, Bleiziffer S, Deutsch MA, Krane M, Mazzitelli D, Lange R, Piazza N.

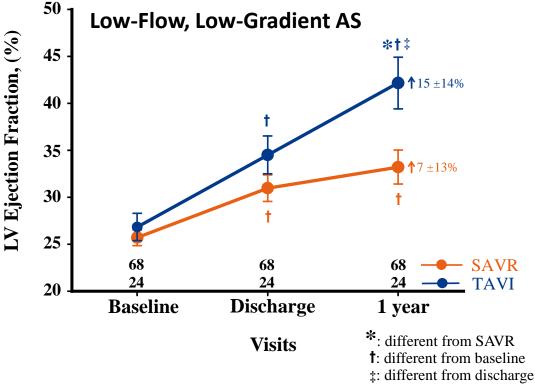

- 505 consecutive patients with severe aortic stenosis who underwent TAVI
- Patients were stratified according to LV function as follows: normal LV function (ejection fraction [EF] >50%), moderate LV dysfunction (EF 35%-50%) and severe LV dysfunction (EF ≤35%).
- No significant difference in 30-day mortality was observed between the LV function subgroups.

J Invasive Cardiol. 2014 Mar;26(3):132-8.

Challenging case of LV dysfunction

- How do we establishing the diagnosis?
- Is the risk of procedure increased?
- What is the prognosis without TAVI ?
- Will the prognosis be improved by TAVI?
- Will the ventricle recover post TAVI?
- Does LV function impart a worse prochosis with TAVI compared to Normal LVEF?

Treatment Comparison in Low-EF, Low-Flow, Low-Gradient



Herrmann et al Circulation 2013

Challenging case of LV dysfunction

- How do we establishing the diagnosis?
- Is the risk of procedure increased?
- What is the prognosis without TAVI ?
- Will the prognosis be improved by TAVI?
- Will the ventricle recover post TAVI?
- Does LV function impart a worse prognosis with TAVI compared to Normal LVEF?

Recovery of LVEF in Patients with Low-LVEF, Low-Flow, Low-Gradient AS: TAVR versus SAVR

Clavel Circulation, 122:1928-36., 2010

Challenging case of LV dysfunction

- How do we establishing the diagnosis?
- Is the risk of procedure increased?
- What is the prognosis without TAVI ?
- Will the prognosis be improved by TAVI?
- Will the ventricle recover post TAVI?
- Does LV function impart a worse prognosis with TAVI compared to Normal LVEF?

LV dysfunction & TAVI

LV dysfunction increases risk mortality at 1 year

Group b					Risk	ratio and 95% CI		
LEF defi	inition	Risk ratio		Upper limit				
	Moat NE (low EF<30%)	1.65	0.98	2.78				
	Munoz Garcia (low EF<30%)	2.28	1.50	3.44				
	Piazza N	2.50	0.49	12.83	1			
	Ewe S (low EF<30%)	1.76	0.99	3.12				
	Pilgrim T	0.97	0.42	2.25	-			
	Van der Boom	0.63	0.26	1.51				
	Amabile (low EF<30%)	1.76	0.99	3.12				
<30%	Pooled estimate (I sq=32%)	1.60	1.19	2.16				
	Barbash I	1.10	0.61	1.97				
	Herrmann HC	1.20	0.95	1.52				
	O'Sullivan CJ	1.25	0.59	2.66				
	Le Ven F	1.48	1.12	1.95				
	Moat NE (low EF<50%)	1.49	1.03	2.16				
	Fraccaro C	2.22	1.19	4.13				
	Gotzmann M	1.78	1.08	2.94				
	Munoz Garcia (low EF<50%)	2.23	1.49	3.35				
	Ewe S (low EF<50%)	1.70	0.99	2.92				
	Amabile (low EF <50%)	1.70	0.99	2.92				
<50%	Pooled estimate (I sq=17%)	1.52	1.31	1.76				

Low gradient

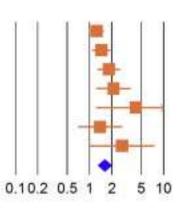
Low SVI

limit

1.08

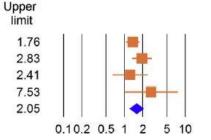
1.36

0.65


1.01

1.23

Study name

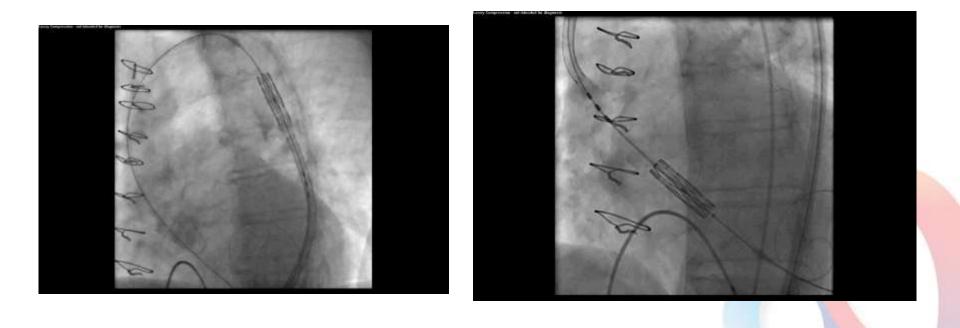

	Risk ratio	Lower limit	Upper limit
Herrmann HC	1.26	1.00	1.58
Le Ven F	1.45	1.10	1.91
Zahn R	1.83	1.29	2.60
Gotzmann M	2.12	1.26	3.59
Amabile	4.24	1.23	14.62
Biner, S	1.40	0.71	2.75
Elhmidi Y	2.76	1.01	7.53
Pooled estimate	1.60	1.30	1.97
(I sq=36%)			

Risk ratio and 95% CI

Study name Risk Lower ratio 1.38 Herrmann HC Le Ven F 1.96 1.25 O'Sullivan CJ 2.76 Elhmidi Y Pooled estimate 1.59 (| sq=27%)

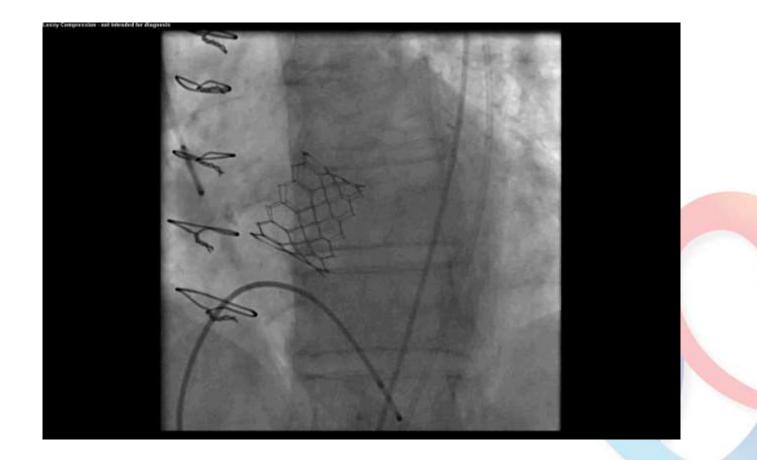
Risk ratio and 95% CI

The Prince Charles Hospital TAVI Case Presentation


Summary and Discussion

83yo maleMixed CMP- EF 30%Low flow, low gradient AS

Technically suitable for: Femoral TAVI.
Valve choice/sizing: Edward Sapien S3 29mm



Procedure

Conclusions LV Dysfunction:

- Important to establish the diagnosis of Aortic stenosis
- TAVI can be safely performed in pt severe Aortic stenosis and with IV dysfunction
- Outcomes are are improved with TAVI compared to medical therapy and survival is acceptable
- LV recovery may occur
- Patietn with Lv dysfunction have a worse prognosis post TAVI than those with normal EF